

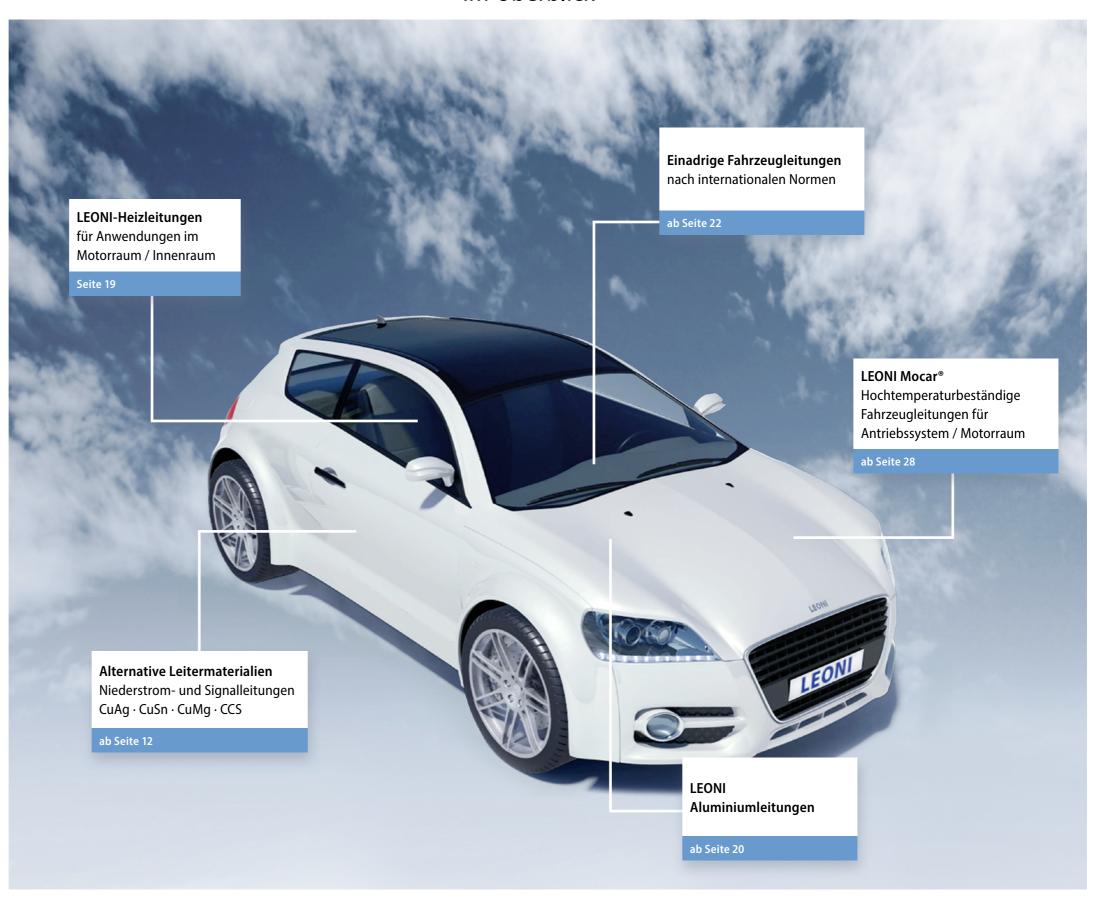
The Quality Connection

LEONI-Fahrzeugleitungen · einadrig

im Überblick

Inhalt Seite ${\sf LEONI-Fahrzeugleitungen} \cdot einadrig$ im Überblick Die LEONI-Gruppe Kabelkompetenz für unterschiedlichste industrielle Märkte **Business Unit Automotive Standard Cables** Unsere Kernkompetenzen 5 6 Kennzeichnung von Fahrzeugleitungen Isolierwerkstoffe 7 Eigenschaften der Isolierwerkstoffe Leiterwerkstoffe 10 Alternative Leitermaterialien 12 Kurzzeichenschlüssel 14 Internationale Standards – Automotive Cables

Fahrzeugleitungen · einadrig LEONI-Produktprogramm


Qualitäts- und Umweltmanagement 42
LEONI weltweit 43

Ausgabe: Oktober 2012

Technische Änderungen behalten wir uns vor.

© by LEONI Kabel GmbH 2012

Hinweis: LEONI gewährleistet, dass die in diesem Katalog enthaltenen Liefergegenstände bei Gefahrübergang die vereinbarte Beschaffenheit aufweisen. Diese bemisst sich ausschließlich nach den zwischen LEONI und dem Besteller schriftlich getroffenen konkreten Vereinbarungen über die Eigenschaften, Merkmale und Leistungscharakteristika des jeweiligen Liefergegenstandes. Abbildungen und Angaben in Katalogen, Preislisten und sonstigem dem Besteller von LEONI überlassenen Informationsmaterial sowie produktbeschreibende Angaben sind nur dann rechtlich bindend, wenn sie ausdrücklich als verbindliche Angaben bezeichnet sind. Solche Angaben sind keinesfalls als Garantien für eine besondere Beschaffenheit des Liefergegenstandes zu verstehen. Derartige Beschaffenheitsgarantien müssen ausdrücklich schriftlich vereinbart werden. LEONI behält sich Änderungen des Kataloginhalts jederzeit vor.

www.leoni-automotive-cables.com

Die LEONI-Gruppe

Kabelkompetenz für unterschiedlichste industrielle Märkte

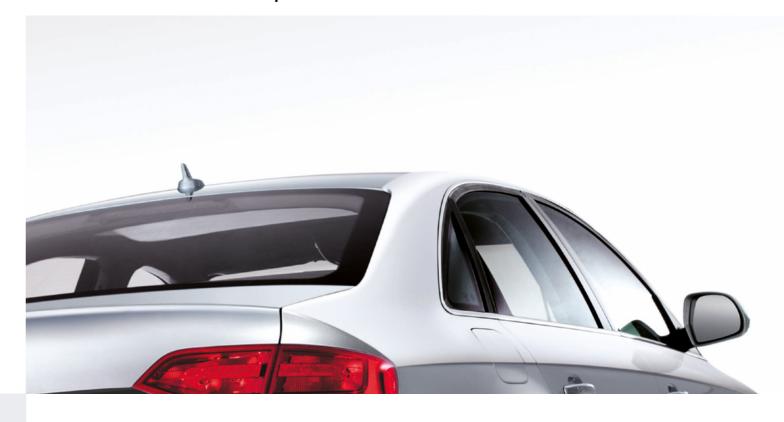
LEONI ist ein führender Anbieter von Kabeln und Kabelsystemen sowie Dienstleistungen für die Automobilbranche und viele weitere Industrien.

Die Unternehmensgruppe beschäftigt mehr als 63.000 Mitarbeiter in 31 Ländern. Unternehmerischer Weitblick, höchste Qualität und Innovationskraft haben LEONI zu einem führenden Hersteller der Kabelbranche in Europa gemacht. LEONI entwickelt und produziert ein technisch anspruchsvolles Produktportfolio vom Draht und der optischen Faser über Kabel bis zu kompletten Kabelsystemen und bietet die zugehörigen Dienstleistungen an. Darüber hinaus umfasst das Leistungsspektrum Litzen, standardisierte Leitungen, Hybrid- und Glasfaser- sowie Spezialkabel, Kabelsätze und Bordnetzkomponenten sowie komplett konfektionierte Systeme für Anwendungen in unterschiedlichen industriellen Märkten.

Ihre Märkte – unsere Stärke.

So vielfältig wie das Produkt- und Leistungsspektrum sind auch die Märkte und Branchen, die LEONI beliefert. Wir konzentrieren unsere Aktivitäten auf Kunden in den Märkten Automobile & Nutzfahrzeuge, Industrie & Gesundheitswesen, Kommunikation & Infrastruktur, Haus- & Elektrogeräte und Drähte & Litzen.

Im Markt Automotive zählen wir in einigen Produktbereichen zu den Weltmarktführern. Die Kunden unseres Geschäftsbereichs Automotive Cables profitieren weltweit von ebenso innovativen wie zuverlässigen und langlebigen Qualitätsprodukten.


LEONI – wir schaffen die beste Verbindung für ihre Zukunft.

Weitere Informationen unter www.leoni-automotive-cables.com

Das Leistungsspektrum im Überblick Drähte und Litzen Optische Fasern Steckverbinde Die LEONI-Kernmärkte LEONI Automobile Industrie Kommunikation Drähte Haus-Elektrogeräte Nutzfahrzeuge Gesundheitswesen Infrastruktur Litzen

Business Unit Automotive Standard Cables

Unsere Kernkompetenzen

Seit 1931 ist LEONI führender Hersteller von Kabeln und Leitungen für die Automobilindustrie und avanciert zum weltweit größten und erfolgreichsten Zulieferer – zum Global Player.

Die Business Unit Automotive Standard Cables gehört bei einadrigen Fahrzeugleitungen zu den Weltmarktführern und bietet eine umfangreiche Produktpalette mit verschiedensten OEM-und Tier1-Freigaben.

Globale Präsenz:

Kundennähe ist zentraler Bestandteil unserer Firmenpolitik. Neben Fertigungsstandorten in China, Deutschland, Indien, Marokko, Mexiko, Polen, Türkei und Ungarn bietet LEONI ein globales Vertriebs- und Produktmanagementnetzwerk, das Sie überall auf der Welt berät und betreut.

Umfangreiches Produktsortiment:

LEONI liefert Leitungen nach internationalen Normen wie ISO (Europa), JASO (Japan) und SAE (USA) sowie nach den Spezifikationen aller großen internationalen Automobilhersteller.

Hoher Qualitätsstandard:

Standardisierung von Methoden und klare Definition von Prozessen gewährleisten an allen Produktionsstandorten weltweit eine gleichbleibend hohe LEONI-Qualität.

Kurz:

Das breit gefächerte Leistungsspektrum der Geschäftseinheit Automotive Standard Cables macht sie zu einem gefragten Partner der Bordnetzhersteller und Konfektionäre weltweit.

Kennzeichnung von Fahrzeugleitungen

Herstellerkennzeichnung

1. Einadrige Leitungen mit einem Nennquerschnitt von 0,5 mm² und größer werden dauerhaft mit dem Herstellerzeichen "LEONI" in Abständen von max. 200 mm gekennzeichnet (geprägt oder gedruckt).

Bei Leitungen mit einem Nennquerschnitt kleiner als 0,5 mm² ist die Kennzeichnung zwischen Hersteller und Anwender zu vereinbaren.

2. Neben dieser Kennzeichnung kann für die einzelnen Fertigungsstätten eine zusätzliche Kennzeichnung mittels eines zusätzlichen Buchstaben angebracht werden.

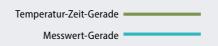
Farbkennzeichnung

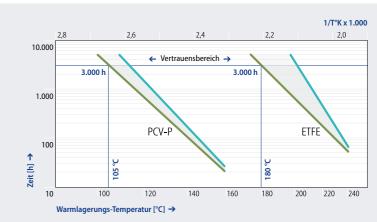
1. Bevorzugte Isolierungsfarben bei Fahrzeugleitungen: weiß, gelb, grau, grün, rot, violett, braun, blau, schwarz, orange (DIN 72551-7 bzw. DIN IEC 304). Andere Farbkennzeichnungen sind nach Absprache zulässig.

2. Zweifarbige Fahrzeugleitungen werden mit zwei diametral gegenüberliegenden eingespritzten Längsstreifen gekennzeichnet. Die Kennstreifenbreite beträgt min. 7 % der Leitungsoberfläche, wobei beide Kennstreifen zusammen max. 35 % der Leitungsoberfläche bedecken dürfen.

3. Für dreifarbige Fahrzeugleitungen gilt gemäß LV 112-1:

- 1. Kennfarbe: Grundfarbe
- 2. Kennfarbe: Längsstreifen (siehe Absatz 2.)
- 3. Kennfarbe: Farbringe
 Breite der Farbringe 3±1 mm. Abstand zwischen zwei Farbringen: 6–20 mm. Ein Versatz zwischen den Ringhälften von max. 1 mm ist zulässig.


Andere Kennzeichnung


Auf Anfrage können die Leitungen auch mit Ziffernbedruckung geliefert werden. Da Fahrzeugleitungen zur Klasse der Niederspannungsleitungen gehören, ist keine CE-Kennzeichnung erforderlich. Leitungen im Hochspannungsbereich sollen mit der Grundfarbe orange versehen werden.

Isolierwerkstoffe

Ermittlung der

Dauergebrauchstemperatur

LEONI entwickelt und verwendet Isolierwerkstoffe, die unter Betriebsbedingungen hohe Sicherheit bei langer Gebrauchsdauer bieten. Die Struktur und Eigenschaften der Werkstoffe finden Sie in den folgenden Punkten und in der Tabelle auf Seite 8–9.

Thermoplastische Kunststoffe

- Weichgestellte oder teilkristalline Polymere.
- Zähelastisches Verhalten im Bereich der Gebrauchstemperatur.
- Plastisch verformbar bei Temperaturen oberhalb des Fließbereichs.

Thermoplastische Elastomere

- Polymere Weich- und Hartsegmente.
- Gummi-elastisches Verhalten im Bereich der Gebrauchstemperatur.
- Plastisch verformbar bei Temperaturen oberhalb des Fließbereichs.

Elastomere/vernetzte Kunststoffe

- Vernetzte polymere Weich- und Hartsegmente.
- Gummi-elastisches Verhalten mit großer reversibler
 Deformierbarkeit im Bereich der Gebrauchstemperatur.
- Kein thermoplastisches Fließverhalten die vernetzte Struktur bleibt weit über die Gebrauchstemperatur bis zur Zersetzungstemperatur erhalten.

Anforderungen und Qualität

- Materialprüfung und Werkstoffentwicklung nach Kundenvorschriften, nationalen oder internationalen Normen.
- Optimierung der Eigenschaften aufgrund veränderter oder neuer Anforderungen.
- Regelmäßige Qualitätskontrollen im Rahmen von Produktaudits.

Auswahlkriterien für den Einsatz

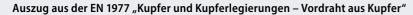
- Gebrauchstemperaturen
- Elektrische Werte
- Flexibilität/Härte
- Mechanische Belastbarkeit
- Abriebfestigkeit
- Medienbeständigkeit
- Flammwidrigkeit halogenfrei gering halogenhaltig

Gebrauchstemperaturen

Die Gebrauchstemperatur wird in der Kälte durch die Prüfung auf Kältefestigkeit oder der dynamische Biegefestigkeit bzw. durch die Wickelprüfung bei niedriger Temperatur nach ISO 6722-1 bestimmt. Die maximale Dauergebrauchstemperatur für Werkstoffe ohne Beeinträchtigung spezifischer Materialeigenschaften wird durch den Temperaturindex nach DIN ISO 2578 festgelegt. Die Temperatur-Zeit-Kurven mit 50 % Abfall der Reißdehnung nach der Wärmelagerung bestimmen den Temperaturindex bei 3.000 h. Höhere Temperaturen sind zulässig, wenn die Zeitspanne reduziert wird (thermische Überlastbarkeit).

Die obige Abbildung zeigt Beispiele zur Ermittlung der Dauergebrauchstemperatur. Die Messwertgeraden liegen über der für das Material spezifizierten Temperatur-Zeit-Geraden. Der Bereich dazwischen ist der Vertrauensbereich.

Eigenschaften der Isolierwerkstoffe Alle eingesetzten Compounds sind schwermetallfrei.


								Gebra	auchstemperatur	en					N	/ledienbeständi	gkeit	
Kurz- zeichen	Benennung	Kenn- zeichen	Dichte	Halogen- anteil	Härte Shore A/D	Zug- festigkeit	Reiß- dehnung	Temperatur Index	Thermische Überlast- barkeit	Kältewickel- eigen- schaften	spez. Durch- gangswiderstand	Abrieb	Flamm- widrigkeit	Öl	Kraftstoff	Brems- flüssigkeit	Säuren/ Laugen	org. Medien
	z. B. DIN ISO 1629 und 7728	DIN 76722	ISO 11183		ISO 868	ISO 527	ISO 527 DIN 53504		ISO 6722-1		IEC 93 DIN 53482				ISO 6722-	-1		
			g/cm³	ca. %		MPa	%	°C/3.000 h	°C/48 h	°C	Ω·cm							
PVC-P	Polyvinylchlorid	Y	1,30-1,45	30	80A-60D	>10	>150	100/105	125	-40	>1012	+	+	+	+	_	+	-
PVC-P	Polyvinylchlorid, kältebeständig	YK	1,24-1,34	30	80A-95A	>10	>150	105	110	-50	>1012	+	+	+	+	_	+	-
PVC-P	Polyvinylchlorid, wärmedruckbeständig	YW	1,24-1,34	30	87A-95D	>15	>150	125	140	-40	>1012	+	+	+	+	-	+	-
PE	Polyethylen	2Y	0,92-0,95	0	50D-62D	>15	>300	90	100	-40	>1016	+		_	+		+	-
PA	Polyamid	4Y	1,01	0	72D	>40	>300	105	140	-40	>1012	++	-	++	++	+	+	+
PTFE	Polytetrafluorethylen	5Y	2,12-2,17	75	55D-65D	>20	>200	260	305	-90	>1018	++	++	++	++	++	++	++
FEP	Tetrafluorethylen-Hexafluorpropylen	6Y	2,14	75	55D	>15	>200	210	260	-65	>1015	++	++	++	++	++	++	++
ETFE	Ethylen-Tetrafluorethylen	7Y	1,70	60	75D	>30	>200	180	230	-65	>1015	++	++	++	++	++	++	++
PP-FR	Polypropylen, flammwidrig	9Y	1,05-1,3	12	42D-60D	>15	>200	125	150	-40	>1014	+	+	+	+	_	+	+
PVDF	Polyvinylidenfluorid	10Y	1,8	35	78D	>25	>100	150	160	-30	>1014	++	++	++	++	++	+	+
PFA	Perfluoralkoxy-Copolymer	51Y	2,15	75	55D	>20	>200	260	290	-90	>1015	++	++	++	++	++	++	++
			g/cm³	ca. %		MPa	%	°C/3.000 h	°C/48 h	°C	Ω·cm							
TPE-U	Thermoplastisches Polyether-Polyurethan	11Y	1,12	0	75A-54D	>30	>400	110/125	150	-40	>109	++	+	++	++	+	+	+
TPE-E	Thermoplastisches Polyether-ester Elastomer	12Y	1,16-1,25	0	40D-82D	>25	>400	90	150	-40	>109	++	-	++	++	+	-	+
TPE-E	Thermoplastisches Polyester-Elastomer	13Y	1,25-1,28	0	55D-62D	>30	>300	150	180	-40	>109	++	+	++	++	+	+	+
TPE-S	Thermoplastisches Styrol-Block-Copolymer	31Y	1,10-1,30	0-10	50D-65D	>15	>200	125	150	-40	>1010	_	+	+	+	-	+	-
TPE-A	Thermoplastisches Polyamid-Elastomer	41Y	1,01-1,06	0	63D	>25	>400	90	120	-40	>1010	++	-	++	++	+	-	+
			g/cm³	ca. %		MPa	%	°C/3.000 h	°C/48 h	°C	Ω·cm							
SIR	Silikon-Gummi	2G	1,20-1,30	0	40A-90A	6–20	>200	200	225	-80	>1016	-	+	+	+	++	+	+
EVA	Ethylen-Vinylacetat	4G	1,30-1,40	0	80A-87A	>7	>150	140	180	-40	>1010	_	-	-	-	-	-	-
PVC-X	Polyvinylchlorid, vernetzt	Х	1,35	30	95A	>10	>150	105	140	-40	>1012	++	+	+	+	-	+	+
PE-X	Polyethylen, vernetzt	2X	1,1	10	60D	>10	>200	125	150	-40	>1014	+	+	+	+	-	+	+
PE-X	Polyethylen, vernetzt, halogenfrei	2X	1,4	0	50D-62D	>10	>200	125	150	-40	>1014	+	+	+	+	-	+	+

⁺⁺ ausgezeichnet + gut - bedingt gut -- ungenügend

Leiterwerkstoffe

Als Leiterwerkstoff kommt bei unseren Leitungen überwiegend Kupfer (Cu) zum Einsatz. Für die Produktion von Drähten wird hauptsächlich Cu-ETP1 (sauerstoffhaltiges Kupfer) und Cu-OF 1 (sauerstofffreies Kupfer für besondere Anforderungen, z. B. Wasserstoffbeständigkeit) eingesetzt.

Neben reinem Kupfer verarbeiten wir auch verschiedene Kupfer-Legierungen und Aluminium für spezielle Anwendungen.

Kurzzeichen	Werkstoff- nummer	Zusammen- setzung	Dichte	Schmelz- punkt	% IACS min.	Hinweise auf Eigenschaften und Verwendung
		in Gewicht-%	g/cm³			
Sauerstoffha	ltiges Kupfer					
Cu-ETP1	CW 003 A	Cu ≥ 99,90	8,9	1.083 °C	101	Sauerstoffhaltiges (zähgepoltes) Kupfer
(E-Cu)		Sauerstoff				mit einer elektrischen Leitfähigkeit im
		max. 0,040				weichen Zustand von ≥ 58,58 m/Ωmm²
						bei 20 °C.
Sauerstofffre	eies Kupfer, ni	cht desoxidier	t			
Cu-OF1	CW 007 A	Cu 99,95	8,9	1.083 °C	101	Kupfer hoher Reinheit, weitgehend frei
(OF-Cu)						von im Vakuum verdampfenden Elemen-
						ten, mit einer elektrischen Leitfähigkeit
						im weichen Zustand von \geq 58,58 m/ Ω mm ²
						bei 20 °C.
						Halbzeug mit hohen Anforderungen an
						Wasserstoffbeständigkeit, Schweiß- und
						Hartlötbarkeit.
						Für Vakuumtechnik und Elektronik.

International Annealed Copper Standard = IACS ElektrischeLeitfähigkeitvonKupfer=min.58m/ Ω mm²=100%IACS

Auszug aus der DIN CEN/TS 13388 und EN 1977 – Legierungen

Kurzzeichen	Werkstoff- nummer	Zusammen- setzung	Dichte	Schmelz- punkt	% IACS min.	Hinweise auf Eigenschaften und Verwendung
		in Gewicht-%	g/cm³			
CuAg 0,1	CW 013 A	Ag	8,9	1.083 °C	98	Kupferlegierung mit hoher Zugfestigkeit
		min. 0,08				und einer elektrischen Leitfähigkeit
		max. 0,12				im weichen Zustand von \geq 57 m/ Ω mm ²
						bei 20 °C.
CuMg 0,2	CW 127 C	Mg ⁶	8,9	1.078 °C	75	Kupferlegierung mit hoher Zugfestigkeit
		min. 0,14				und einer elektrischen Leitfähigkeit
		max. 0,26				im weichen Zustand von ≥ 44 m/Ωmm²
						bei 20 °C.
CuSn 0,3 ⁶⁶	CW 129 C	Sn ⁶	8,9	1.065 °C	72	Kupferlegierung mit hoher Zugfestigkeit
		min. 0,25				und einer elektrischen Leitfähigkeit
		max. 0,35				im weichen Zustand von \geq 42 m/ Ω mm ²
						bei 20 °C.

Toleranz abweichend zu DIN CEN/TS 13388 Kurzzeichen abweichend zu DIN CEN/TS 13388

Auszug aus der EN 573 – Aluminium

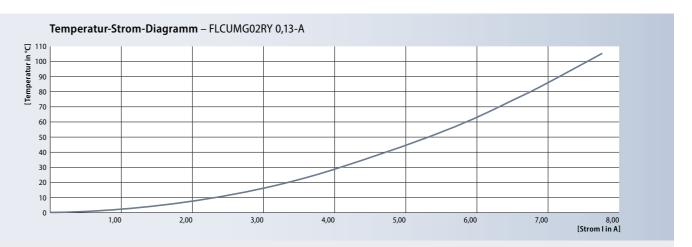
Kurzzeichen	Werkstoff- nummer	Zusammen- setzung	Dichte	Schmelz- punkt	% IACS min.	Hinweise auf Eigenschaften und Verwendung
		in Gewicht-%	g/cm³			
EAI 99,7	1370	AI 99,7	2,7	659 °C	62	Aluminium mit einer elektrischen Leitfähigkeit im weichen Zustand von ≥ 35,5 m/Ωmm² bei 20°C.

Alternative Leitermaterialien

Anwendung

Niederstrom- und Signalleitungen für die Anwendung in der Automobilindustrie oder für industrielle Anwendungen.

Material		Material-Standard			
CuAg	Kupfer Silber	DIN CN/TS 13388			
CuAy	niedrige Kupferlegierung	DIN CN/ 13 13300			
CCS	Stahl, kupferkaschiert	ASTM B 227, ASTM B 228, ASTM B 452			
CuMg	Kupfer Magnesium	DIN CN/TS 13388			
Culvig	niedriglegiertes Kupfer	DIII CIV/ 13 13300			
CuSn	Kupfer Zinn	DIN CN/TS 13388			
Cusn	niedriglegiertes Kupfer	DIIV CIV/ 13 13300			


Eigenschaften

	CuAg	ccs	CuMg	CuSn	Cu-ETP	
Elektrische	95 %, IACS	40 %, IACS	75 %, IACS	72 % , IACS	100 %, IACS	
Leitfähigkeit					> 220 N/mm²	
Zugfestigkeit ⁶	> 540 N/mm ²	>770 N/mm ²	> 670 N/mm ²	>620 N/mm ²		
Bruchdehnung	> 1 %	>1 %	> 1 %	> 16 %		
Biegewechsel-	Anzahl der Zyklen					
eigenschaften	8000 6000 4000	ccs			CU-ETP1	
	2000 CuAg		CuMg	CuSn	weichgeglüht	
	0,13 mm ²	0,13 mm ²	0,13 mm ²	0,13 mm ²	0,35 mm²	

 $Werte \ basieren \ auf \ weichgegl\"{u}htem \ ETP-Kupfer \ und \ hart \ gezogenem \ CuAg, CCS, CuMg \ und \ CuSn$

Gegenüberstellung der Leitungstypen

Materialien	FLCUAGRY	FLCUAGRY	FLCCSRY	FLCUMGRY	FLCUSNRY	FLRY	Ratio
Querschnitt	0,13 mm ²	0,17 mm ²	0,13 mm ²	0,13 mm ²	0,13 mm ²	0,35 mm ²	63-65 % Reduzierung
Zugfestigkeit	> 95 N	>100 N	>130 N	>100 N	>100 N	> 75 N	20–33 % Steigerung
Gewicht ca.	2,0 kg/km	2,5 kg/km	2,0 kg/km	2,0 kg/km	2,0 kg/km	4,5 kg/km	45–55 % Reduzierung

Isolierung: Je nach Anwendung und Anforderung stehen diverse Isolationsmaterialien zur Auswahl.

FLR – Leiteraufbau symmetrisch Typ A mit reduzierter Wanddicke

			Leiter	aufbau		Isolierung	Ka	bel
	Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø	Elektrischer Widerstand bei 20°C	Wanddicke	Außen-Ø	Gewicht
			max.	max.	max.	min.	max.	ca.
	mm ²		mm	mm	mΩ/m	mm	mm	kg/km
	0,13	7	0,16	0,49	145	0,2	1,05	2,0
CuAg01	0,17	7	0,18	0,56	105	0,2	1,1	2,5
CuAgoi	0,22	7	0,21	0,7	86	0,2	1,2	3,1
	0,35	19	0,16	0,9	58	0,2	1,4	4,7
	I	I	I	T	T	T	I	Γ
	0,13	7	0,16	0,49	170	0,2	1,05	2,0
CuSn03	0,22	7	0,21	0,7	115	0,2	1,2	3,1
	0,35	19	0,16	0,9	81	0,2	1,4	4,7
	I	I	I	I	T	I	I	
CuMg02	0,13	7	0,16	0,49	170	0,2	1,05	2,0
	0,13	7	0,16	0,49	317	0,2	1,05	2,1
CCS	0,22	7	0,21	0,7	210	0,2	1,2	2,9

FLU – Leiteraufbau symmetrisch Typ A mit ultradünner Wanddicke

			Leitera	aufbau	Isolierung	Ka	bel	
	Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø	Elektrischer Widerstand bei 20°C	Wanddicke	Außen-Ø	Gewicht
			max.	max.	max.	min.	max.	ca.
	mm²		mm	mm	mΩ/m	mm	mm	kg/km
CuAg01	0,17	7	0,18	0,56	105	0,16	1,0	2,3

Der Kurzzeichenschlüssel

Die Typenbezeichnung gibt in gekürzter und vereinfachter Form Aufschluss über die Art der Isolier- und Mantelwerkstoffe und die wichtigsten Konstruktionsmerkmale einer Leitung. Die Details sind in der DIN 76722 gelistet. Eine Typenbezeichnung setzt sich aus mehreren Gruppen zusammen, welche zuerst die Leitungsart und, nachfolgend von innen nach außen, den Aufbau wiedergeben:

		let to				
1.	Art der Leitung	Fahrzeugleitung Fahrzeugzündleitung	FL FZL			
		ranizeugzundieitung	FZL			
	Leiterwerkstoffe	Aluminium	AL			
	Kupfer wird nicht extra bezeichnet	Widerstandsleiter	W			
2.		Sonstige Leiterwerkstoffe	M			
	* Die Zusammensetzung der Legierungen wird	Kupferlegierungen*	CU "xx"			
	vollständig angegeben.	Aluminiumlegierungen*	AL "xx"			
	Beispiele: CuMg02, CuSn03, CuAg01	Stahl, kupferkaschiert	CCS			
		Ultradünne Isolierung nach ISO 6722-1	U			
	Comment to the Martin Louis and Comment	Reduzierte Isolierung nach ISO 6722-1	R			
3.	Geometrischer Aufbau der Isolierung	Dickwandige Isolierung ("Thick wall") nach ISO 6722-1 (wird nicht gekennzeichnet)				
		Verstärkte Isolierung (Wanddicke größer als in ISO 6722-1)	S			
		Weich-PVC (Polyvinylchlorid)	Υ			
		Weich-PVC wärmebeständig, wärmedruckbeständig	YW			
		Weich-PVC kältebeständig	YK			
		PE (Polyethylen)	2Y			
		PA (Polyamid)	4Y			
		PTFE (Polytetraflourethylen)	5Y			
		FEP (Tetrafluorethylen/Hexafluorpropylen)	6Y			
		ETFE (Ethylen/Tetrafluorethylen)	7Y			
	Warrandahan Carlos Paramakaha Ma	PP (Polypropylen)	9Y			
	Kennzeichen für Isolierwerkstoffe	PVDF (Polyvinylidenfluorid)	10Y			
4.	Kurzzeichen, die als Abkürzungen für	TPE-U (Thermoplastisches Elastomer auf Basis Polyurethan, PUR)	11Y			
	Isolierwerkstoffe eingesetzt werden	TPE-E (Thermopl. Polyester-Elastomer auf Basis Polyether-Ester)	12Y			
		TPE-E (Thermopl. Polyester-Elastomer auf Basis Polyester-Ester)	13Y			
		TPE-S (Thermopl. Polyester-Elastomer auf Basis Polystyrol)	31Y			
		TPE-A (Thermopl. Polyester-Elastomer auf Basis Polyamid)	41Y			
		PFA (Perfluoralkoxy-Copolymer)	51Y			
		PVC-X (Polyvinylchlorid, vernetzt)	X			
		PE-X (Polyethylen, vernetzt)	2X			
		SIR (Silikon-Gummi)	2G 4G			
		EVA (Ethylen/Vinylacetat)	46			
		Folienschirm	В			
	Kennzeichen für Aufbauelemente	Kupferdrahtgeflecht	C			
5.	Verschlüsselte Kennzeichen für weitere	Kupferdrahtumspinnung	D			
٥.	Aufbauelemente und nicht extrudierte	Glasseidegeflecht	G			
	Umhüllungen	Isolierfolie	Р			
		Textilumflechtung	T			
		6				
	Leiterquerschnitt und Leiteraufbauten	Symmetrischer Leiteraufbau nach ISO 6722-1	Α			
	Diese stehen jeweils am Ende des Kurzzeichen-		_			
6.	blocks. Beim Leiteraufbau wird zwischen	Unsymmetrischer Leiteraufbau nach ISO 6722-1	В			
	folgenden Aufbauten unterschieden					
		Feindrähtiger Leiteraufbau nach ISO 6722-1**	С			
	A. 477 J. J. 111.	Verzinnt	SN			
	Oberflächenbeschichtungen					
7.	Für metallbeschichtete Kupferdrähte wird in	Vernickelt	NI			
	bestimmten Fällen die Art der Metallbeschichtung					
	wie folgt angegeben	Versilbert	AG			

^{**} Besonders flexible bzw. hochflexible Litzen sind dadurch gekennzeichnet, dass hinter dem Nennquerschnitt zusätzlich der nominale Einzeldraht-Durchmesser angegeben werden kann.

Beispiele

Einadrige Leitungen

FLY 0,5

Fahrzeugleitung	FL
PVC-Isolierung	Y
Nennquerschnitt 0,5 mm²	0,5

FLRY 0,75

Fahrzeugleitung	FL
reduzierte Wanddicke der Isolierung	R
PVC-Isolierung	Υ
Nennquerschnitt 0,75 mm²	0,75

FLYK 25,0/0,1

Fahrzeugleitung	FL
Isolierung (kältebeständiges PVC)	YK
Nennquerschnitt 25 mm²	25,0
max. Einzeldraht-Durchmesser 0,1 mm	0,1

FLR5Y 0,5NI-A

Fahrzeugleitung	FL
reduzierte Wanddicke der Isolierung	R
PTFE-Isolierung	5Y
Nennquerschnitt 0,5 mm²	0,5
vernickelte Einzeldrähte	NI
symmetrischer Leiteraufbau	-A

FLALRY 10,0

Fahrzeugleitung	FL
Leiterwerkstoff Aluminium	AL
reduzierte Wanddicke der Isolierung	R
PVC-Isolierung	Υ
Nennquerschnitt 10,0 mm²	10,0

Verdrillte Leitungen (ohne Mantel)

FLRY 2x1,5SN-B

Fahrzeugleitung	FL
reduzierte Wanddicke der Isolierung	R
PVC-Isolierung	Υ
zweiadrig	2x
Nennquerschnitt 1,5 mm²	1,5
verzinnte Einzeldrähte	SN
unsymmetrischer Leiteraufbau	-B

Leitungen mit alternativen Leitermaterialien

FLCUAG01RY 0,13-A

, and the second	
Fahrzeugleitung	FL
Kupferlegierung mit Silber (Ag) Anteil von 0,1 %	CuAg01
reduzierte Wanddicke der Isolierung	R
PVC-Isolierung	Υ
Nennquerschnitt 0,13 mm²	0,13
symmetrischer Leiteraufbau	-A

Internationale Standards – Automotive Cables

Internationale Standards

ISO 6722 -1	Fahrzeugleitungen, 60 V und 600 V einadrig
ISO 6722 -2	Fahrzeugleitungen mit Aluminium, 60 V und 600 V einadrig
ISO 14 572	Fahrzeugleitungen, rund geschirmt und ungeschirmt, 60 V und 600 V mehradrige Leitungen
LV 112-1	Elektrische Leitungen für Kraftfahrzeuge (Kupfer, einadrig, ungeschirmt)
LV 112-2	Elektrische Leitungen für Kraftfahrzeuge (Aluminium, einadrig, ungeschirmt)
LV 112-3	Bestimmung der Strombelastbarkeit von Fahrzeugleitungen
LV 112-4	Elektrische Leitungen für Kraftfahrzeuge (Leitungen aus Kupferlegierung, einadrig, ungeschirmt)
LV 122	Verdrillte Leitungen
LV 212	Mantelleitungen für Kraftfahrzeuge (Anforderungen und Prüfungen)
LV 213-1 & LV 213-2	Hochfrequenzleitungen für Kraftfahrzeuge
LV 216-1 & LV 216-2	Hochvolt-Mantelleitungen geschirmt für Kraftfahrzeuge und deren elektrischen Antriebe

Amerikanische Normung: SAE J 1128 Engineering Society for advancing mobility Land, Sea, Air and Space

TWP	Thin wall, Thermoplastic Insulated	(dünnwandige Isolierung, thermoplastisch)
GPT	General Purpose, Thermoplastic Insulated	(normale Isolierung, thermoplastisch)
HDT	Heavy Duty, Thermoplastic Insulated	(verstärkte Isolierung, thermoplastisch)
TXL	Thin wall, Cross (X) Linked Polyolefin Insulated	(dünnwandige Isolierung, Polyolefin, vernetzt)
GXL	$General\ Purpose,\ Cross\ (X)\ Linked\ Polyolefin\ Insulated$	(normale Isolierung, Polyolefin, vernetzt)
SXL	Special Purpose, Cross (X) Linked Polyolefin Insulated	(Spezial-Isolierung, Polyolefin, vernetzt)
TWE	Thin wall, Thermoplastic Elastomer Insulated	(dünnwandige Isolierung, thermopl. Elastomer)
GTE	General Purpose, Thermoplastic Elastomer Insulated	$(normale\ Isolierung,\ thermoplastisches\ Elastomer)$
HTE	Heavy Duty, Thermoplastic Elastomer Insulated	$(verst\"{a}rkte\ lso lierung,\ thermoplastisches\ Elastomer$

Japanische Normung: JASO D 611:2009 Japanese Automobile Standard

AV	Automobil-Niederspannungsleitung
AVS	Automobil-Niederspannungsleitung mit reduziertem Außendurchmesser, normale Wanddicke
AVSS	Automobil-Niederspannungsleitung mit reduziertem Außendurchmesser, dünnwandig
AVSSf	Automobil-Niederspannungsleitung mit reduziertem Außendurchmesser, dünnwandig, hochflexibel
CAVS	Automobil-Niederspannungsleitung mit reduziertem Außendurchmesser, normale Wanddicke,
	mit kompaktierten Litzen
AVX	Vernetzte Automobil-Niederspannungsleitung, wärmebeständig, PVC-Isolierung
AEX	Vernetzte Automobil-Niederspannungsleitung, wärmebeständig, Polyethylen-Isolierung

Kundenspezifische Standards

Darüber hinaus produzieren wir nach diversen Kundenstandards (siehe Auszug):

Kullae	Kundennorm
BMW	GS 95007-1–1, GS 95007-1–2, GS 95007-2
Bosch	5 998 340, 5 998 342, 5 998 350, N34A AE011B S003, N34A AE011D S006
Daimler	DBL 6312, MBN 22 014
FIAT	FIAT 91107/17, 91107/18, 91107/19
FORD	ES-AU5T-1A348, ES-5M5T-14401
GM/OPEL	GMW 15 626, GME 14 022
Jaguar/Landrover	TPJLR.18.007, JPS D02-17
MAN	MAN 3135–1, MAN 3135-2
PSA	B25 1110, STE 96 461 475 99
Renault	36 - 05 - 009/N
Rover	RES.62.21.759
Volvo	7611 131 R2, 7611 131 R3, 7611 131 R2B, 31834866
VW	VW 60306-1

		Seite
Heizleitungen		
LEONI Mocar® W/LEONI SHC Heizleitung	hochtemperaturbeständig für Anwendungen im Motorraum / Innenraum	19
Aluminiumleitungen		
FLALRY	Aluminiumleitung mit dünnwandiger PVC-Isolierung	20
FLALRYW	Aluminiumleitung mit dünnwandiger PVC-Isolierung hochwärmedruckfest	
Standardleitungen		
FLY	mit PVC-Isolierung	22
FLYW	mit PVC-Isolierung hochwärmedruckfest	23
FLYK	mit PVC-Isolierung kältebeständig, hochflexibel	24
FLRYK	mit dünnwandiger PVC-Isolierung kältebeständig	24
FLRY	mit dünnwandiger PVC-Isolierung Typ A / Typ B	25
FLRYW	mit dünnwandiger PVC-Isolierung Typ A / Typ B, hochwärmedruckfest	26
FLR4Y	mit dünnwandiger PA-Isolierung Typ A / Typ B	27
FLRYH	mit dünnwandiger PVC-Isolierung feindrähtig, hochflexibel	27
LEONI Mocar® Leitung	on	
LEONI Mocar® 125 S	mit TPE-S-Isolierung für flexible und Standardanwendungen	28
LEONI Mocar® 125 P	mit PP-Isolierung Typ A / Typ B, wärmebeständig	29
LEONI Mocar® 125 XS	mit vernetzter PE-Isolierung Typ A / Typ B, wärmebeständig	30
LEONI Mocar® 125 XE	mit vernetzter PE-Isolierung Typ A / Typ B, wärmebeständig	30
LEONI Mocar® 125 XC	XLPE (Polyethylen, peroxidisch vernetzt), halogenfrei	32
LEONI Mocar® 125 G	XLPO weich /XLPE (Polyolefin, weich, vernetzt / Polyethylen, vernetzt) oder XLPO extraweich /XLPE (Polyolefin,	32

extraweich, vernetzt / Polyethylen,

		Seite
LEONI Mocar® 150 A	mit TPE-E-Isolierung Typ A / Typ B, wärmebeständig	31
LEONI Mocar® 150 C	mit TPE-E-Isolierung Typ A / Typ B, wärmebeständig	31
LEONI Mocar® 150 XE	XLPE (Polyethylen elektronenstrah- lenvernetzt), halogenfrei (ZH)	32
LEONI Mocar® 180 E	mit ETFE-Isolierung Typ A / Typ B, hochtemperaturbeständig	32
LEONI Mocar® 200 G	mit Silikon-Isolierung hochtemperaturbeständig	33
LEONI Mocar® 200 G AL	mit Silikon-Isolierung Aluminiumleiter, hochtemperaturbeständig	33
LEONI Mocar® 210 F	mit FEP-Isolierung Typ A / Typ B, hochtemperaturbeständig	34
LEONI Mocar® 260 T	mit PFA-Isolierung hochtemperaturbeständig	35
LEONI Mocar ® 260 R	mit PTFE-Isolierung Typ A / Typ B, hochtemperaturbeständig	35
Leitungen nach ameril	kanischer Normung	
TWP	mit dünnwandiger PVC-Isolierung	36
TXL	mit dünnwandiger, vernetzter PE-Isolierung	36
WTA	mit ultra-dünnwandiger PVC-Isolierung	37
WXC	mit ultra-dünnwandiger XLPE-Isolierung	37
Leitungen nach japani	scher Normung	
AV	mit PVC-Isolierung	38
AVS	mit PVC-Isolierung	38
AVSS	mit dünnwandiger PVC-Isolierung	39
6 1 H 2		
Spezialleitungen	mit TDE II Isolioruna	
FL11Y	mit TPE-U-Isolierung Batterieleitung	40
FLYY	mit PVC-Aderisolierung und PVC-Mantel	40
Verdrillte Leitungen		
FLRY n x	Verdrillte Leitungen ungeschirmt (ohne Mantel)	41

LEONI Mocar® W... / LEONI SHC... Heizleitung

hochtemperaturbeständig, für Anwendungen im Motorraum / Innenraum

sind die Heizleitungen für unterschiedlichste

Applikationen einsetzbar

Anwendungsbeispiele Sitzheizung Schlauchheizung

	Heizleitungen für Anwendungen im Innenraum					
	LEONI SHC Y	PVC	60 100k	−40 °C bis +105 °C		
-	LEONI SHC 12Y	TPE		-40 °C bis +105 °C		
	LEONI SHC 7Y	ETFE		−65 °C bis +180 °C		
	LEONI SHC 6Y	FEP		−65 °C bis +210 °C		

Leiterkonstruk	tionen (LEONI SHC)
С	Weichgeglühtes Elektrolytkupfer Cu-ETP1
Т	Tinsel Trägerfaden umwickelt mit geplätteten Kupferdrähten
E	Leiter aus Lackdrähten Einzeldrähte mit Lackschicht
Н	Hybrid-Leiter Litze mit Einzeldrähten aus verschiedenen Materialien
R	Spezialleiter mit eingearbeitetem Zugentlastungselement
A	Alloy Legierungen

	.002		
ALLEN THE STATE OF			
Beispiel LEONI SHC	7Y A 2000		
Bezeichnung	Isolationsmaterial	Leiterkonstruktion	elektr. Widerstand

FLALRY mit dünnwandiger PVC-Isolierung

Leiteraufbau Isolierung Außen-Ø Anzahl Einzel-Leiter-Ø Elektr. Wand-Gewicht Einzeldicke⁶ quer-Widerstand lässige drähte⁶ bei 20 °C Abweischnitt max. max. max. min. max. chung $\,mm^2$ mΩ/m mm kg/km mm mm mm mm Temperaturbereich (3.000 h) 0,75 11 0,3 1,3 43,6 0,24 1,9 -0,2 16 0,29 1,5 32,7 0,24 2,1 -0,2 -40 °C bis +105 °C 1,25 16 0,32 1,7 24,8 0,24 2,3 -0,2 1,8 -0,2 1,5 16 0,35 21,2 0,24 2,4 Aufbau / Werkstoffe 2 15 0,42 2,0 15,7 0,28 2,8 -0,3 10 Aluminium 99,7 %, \geq 1,25 mm² Leiter 2,5 19 0,43 2,2 12,7 0,28 3,0 -0,3 12 3 23 0,42 2,4 10,2 0,32 3,4 -0,3 15 Aluminiumlegierung < 1,25 mm² 30 0,42 2,8 7,85 0,32 3,7 -0,3 Isolierung Weich-PVC mit Eigenschaften 36 0,42 3,1 0,32 4,2 -0,3 23 gemäß ISO 6722-2, Klasse B 45 3,4 4,3 -0,3 0,42 5,23 0,32 25 59 4,3 -0,4 Spezielle Eigenschaften 50 0,52 4,5 3,03 0,48 -0,7 60 0,52 5,4 2,53 0,48 6,5 -0,7 50 Leitungen mit Querschnitten > 10 mm² 16 78 0,52 5,8 1,93 0,52 7,2 -0,8 sind als Batterieleitungen einsetzbar 20 0,52 1,59 0,52 -0,8 75 95 6,9 7,8 wesentliche Gewichtseinsparung zu Kupfer 25 122 0,52 7,2 1,24 0,52 8,7 -0,8 91 30 141 0,52 8,3 1,08 0,64 9,6 -0,9 110 Normen/Spezifikationen 35 172 0,52 8,5 0,878 0,64 10,4 -1,0 132 40 193 0,788 -1,1 148 0,52 9,6 0,71 11,1 ISO 6722-2 50 247 0,52 10,5 0,613 0,71 12,2 -1,2 60 289 0,52 11,6 0,525 0,80 13,3 -1,3 -1,4 70 351 0,52 12,5 0,432 0,80 14,4 253 85 420 0,52 13,6 0,365 0,90 15,8 -1,4 305 95 463 0,52 14,8 0,327 0,90 16,7 -1,4 334 305 120⁶⁶⁶ 0,72 16,5 0,255 1,28 19,7 -2,0 456 160⁶⁶⁶ 398 0,72 19,0 0,195 1,28 22,5 -2,0 570

- 6 Richtwert, Abweichungen bei der Drahtzahl ≥ 6,0 mm² sind zulässig (± 5%).
- Auch mit erhöhter Wanddicke der Isolierung lieferbar.
- 666 Mit erhöhter Wanddicke.

FLALRYW mit dünnwandiger PVC-Isolierung

hochwärmedruckfest

	Mark Land			Leite	raufbau		Isolierung		Kabe	el
and the same	Miller .							Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte ⁶	Einzel- draht-Ø	Leiter-Ø	Elektr. Widerstand bei 20°C	Wand- dicke ⁶⁶		zu- lässige Abwei-	Gewicht
Maffini hie Wh				max.	max.	max.	min.	max.	chung	ca.
- .	1 (2 000 1)	mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperati	rbereich (3.000 h)	0,75	11	0,3	1,3	43,6	0,24	1,9	-0,2	5
−40 °C b	is +125 °C	1	16	0,29	1,5	32,7	0,24	2,1	-0,2	6
		1,25	16	0,32	1,7	24,8	0,24	2,3	-0,2	7
Aufbau / W	/erkstoffe	1,5	16	0,35	1,8	21,2	0,24	2,4	-0,2	8
		2	15	0,42	2,0	15,7	0,28	2,8	-0,3	10
Leiter	Aluminium 99,7 %, ≥ 1,25 mm ²	2,5	19	0,43	2,2	12,7	0,28	3,0	-0,3	12
	Aluminiumlegierung < 1,25 mm ²	3	23	0,42	2,4	10,2	0,32	3,4	-0,3	15
Isolierung	Weich-PVC mit Eigenschaften	4	30	0,42	2,8	7,85	0,32	3,7	-0,3	18
	•	5	36	0,42	3,1	6,57	0,32	4,2	-0,3	23
	gemäß ISO 6722-2, Klasse C	6	45	0,42	3,4	5,23	0,32	4,3	-0,3	25
C : - II - F	:	8	59	0,42	4,3	3,97	0,32	5,0	-0,4	29
Spezielle	igenschaften	10	50	0,52	4,5	3,03	0,48	6,0	-0,7	44
Geeigne	t für hochwärmedruckfeste	12	60	0,52	5,4	2,53	0,48	6,5	-0,7	50
Anwend	ungen im Motorraum	16	78	0,52	5,8	1,93	0,52	7,2	-0,8	65
	<u> </u>	20	95	0,52	6,9	1,59	0,52	7,8	-0,8	75
wesentii	che Gewichtseinsparung zu Kupfer	25	122	0,52	7,2	1,24	0,52	8,7	-0,8	91
Na 16	'n anifikation an	30	141	0,52	8,3	1,08	0,64	9,6	-0,9	110
Normen/S	pezifikationen	35	172	0,52	8,5	0,878	0,64	10,4	-1,0	132
ISO 6722-2		40	193	0,52	9,6	0,788	0,71	11,1	-1,1	148
		50	247	0,52	10,5	0,613	0,71	12,2	-1,2	183
		60	289	0,52	11,6	0,525	0,80	13,3	-1,3	217
		70	351	0,52	12,5	0,432	0,80	14,4	-1,4	253
		85	420	0,52	13,6	0,365	0,90	15,8	-1,4	305
		95	463	0,52	14,8	0,327	0,90	16,7	-1,4	334
		120 ⁶⁶⁶	305	0,72	16,5	0,255	1,28	19,7	-2,0	456
		160 ⁶⁶⁶	398	0,72	19,0	0,195	1,28	22,5	-2,0	570

- 6 Richtwert, Abweichungen bei der Drahtzahl ≥ 6,0 mm² sind zulässig (± 5%).
- Auch mit erhöhter Wanddicke der Isolierung lieferbar.
- 666 Mit erhöhter Wanddicke.

FLY mit PVC-Isolierung

Leiteraufbau Isolierung Kabel Außen-Ø Anzahl Einzel- Leiter-Ø Elektr. Wandquer-Einzel-Widerstand lässige dicke schnitt drähte⁶ bei 20 °C Abweimax. max. max. max. chung mm mm mΩ/m mm kg/km mm Temperaturbereich (3.000 h) 0,5 16 0,21 1,0 37,1 0,60 2,3 -0,3 0,75 24 0,21 1,2 24,7 0,60 2,5 -0,3 12 -40 °C bis +105 °C 1 32 0,21 1,35 0,60 2,7 -0,3 15 1,25 16 0,33 1,7 14,9 0,60 2,95 -0,55 15 Aufbau / Werkstoffe 1,5 30 1,7 3,0 -0,3 20 0,26 12,7 0,60 Weichgeglühtes Elektrolytkupfer 2 28 0,31 2,0 9,42 0,60 3,3 -0,3 26 2,5 50 0,26 2,2 7,6 0,70 3,6 -0,3 32 Cu-ETP1 nach DIN EN 13602, blank 3 60 0,26 6,15 0,70 4,1 -0,3 38 Leiteraufbau gemäß ISO 6722-1 0,31 2,75 4,71 0,80 4,4 -0,4 49 Isolierung Weich-PVC mit Eigenschaften 5 65 0,33 3,94 0,80 -0,4 60 3,1 gemäß ISO 6722-1, Klasse B 84 0,31 0,80 5,0 -0,4 50 0,46 2,38 0,80 5,9 -0,9 90 Spezielle Eigenschaften 10 80 0,41 4,5 1,82 1,00 6,5 -0,5 113 12 0,41 1,52 1,00 -0,8 144 96 5,4 7,4 Leitungen mit Querschnitten > 6 mm² 16 126 0,41 1,16 1,00 8,3 -0,6 181 6,3 sind als Batterieleitungen einsetzbar 20 152 0,41 6,9 0,955 1,10 9,1 -1,0 221 25 196 0,41 7,8 0,743 1,30 10,4 -0,7 288 Normen/Spezifikationen 30 224 0,41 8,3 0,647 1,30 10,9 -1,2 325 35 276 0,41 0,527 1,30 11,6 -0,6 361 9,0 LV 112-1 · BMW GS 95007-1-1 · VW 60306-1 40 308 0,41 9,6 0,473 1,40 12,4 -1,2 438 ISO 6722-1 50 0,41 10,5 0,368 1,50 13,5 -2,0 521 60 11,6 0,315 1,50 14,6 -1,2 0,51 70 360 0,51 12,5 0,259 1,50 15,5 -2,0 716 95 475 0,51 14,8 0,196 1,60 18,0 -2,0 918 120 608 0,51 16,5 0,153 1,60 19,7 -2,0 1220

FLYW mit PVC-Isolierung

hochwärmedruckfest

Normen/Spezifikationen

Bosch 5 998 341... · DBL 6312

				Leit	eraufbau	Г	Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte ⁶	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke nom.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	0,5	16	0,21	1,0	37,1	0,60	2,3	-0,3	8
_40 °C h	is +125 °C	0,75	24	0,21	1,2	24,7	0,60	2,5	-0,3	11
40 C D	13 1 125 C	1	32	0,21	1,35	18,5	0,60	2,7	-0,3	14
Aufbau / W	/orkstoffa	1,25	16	0,33	1,7	14,9	0,60	2,95	-0,55	14
Auibau / W	reikstorie	1,5	30	0,26	1,7	12,7	0,60	3,0	-0,3	19
Leiter	Weichgeglühtes Elektrolytkupfer	2	28	0,31	2,0	9,42	0,60	3,3	-0,3	25
	Cu-ETP1 nach DIN EN 13602, blank	2,5	50	0,26	2,2	7,6	0,70	3,6	-0,3	31
	Leiteraufbau gemäß ISO 6722-1	3	60	0,26	2,4	6	0,70	4,1	-0,3	37
	•	4	56	0,31	2,75	4,71	0,80	4,4	-0,4	47
Isolierung	Weich-PVC mit Eigenschaften	5	65	0,33	3,1	3,94	0,80	4,9	-0,4	58
	gemäß ISO 6722-1, Klasse C	6	84	0,31	3,3	3,14	0,80	5,0	-0,4	68
		8	50	0,46	4,3	2,38	0,80	5,9	-0,9	88
Spezielle E	igenschaften	10	80	0,41	4,5	1,82	1,00	6,5	-0,5	111
Wärmod	ruckbeständigkeitstest bei 120 °C	12	96	0,41	5,4	1,52	1,00	7,4	-0,8	142
	3	16	126	0,41	6,3	1,16	1,00	8,3	-0,6	179
Geeigne	t für hochwärmedruckfeste	20	152	0,41	6,9	0,955	1,10	9,1	-1,0	218
Anwend	ungen im Motorraum	25	196	0,41	7,8	0,743	1,30	10,4	-1,0	278

⁶ Richtwert, Abweichungen bei der Drahtzahl ≥ 6,0 mm² sind zulässig (± 5%).

 $^{^6}$ Richtwert, Abweichungen bei der Drahtzahl \geq 6,0 mm^2 sind zulässig (± 5%).

FLYK mit PVC-Isolierung

Kältewickelprüfung nach ISO 6722-1 bei –50 °C

Kurzzeit- und Langzeitalterung gemäß ISO 6722-1, Klasse B

kältebeständig , hochflexibel

				Leite	raufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn-	Anzahl	Einzel-	Leiter-Ø	Elektr.	Wand-		zu-	Gewicht
		quer- schnitt ⁶	Einzel- drähte	draht-Ø		Widerstand bei 20 °C	dicke		lässige Abwei-	
		SCHIIIC	urante	max.	max.	max.	nom.	max.	chung	ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	0,5	28	0,16	1,1	37,7	0,60	2,3	-0,3	9
_50 °C h	is +105 °C	0,75	42	0,16	1,3	25,1	0,60	2,5	-0,3	12
30 C D	13 1 105 C	1	57	0,16	1,5	18,8	0,60	2,7	-0,3	15
Aufbau / W	Jorkstoffo	1,5	84	0,16	1,8	12,7	0,60	3,0	-0,3	20
Auibau / W	reikstoffe	2,5	140	0,16	2,3	7,54	0,70	3,9	-0,4	32
Leiter	Weichgeglühtes Elektrolytkupfer	4	1015	0,08	3,3	4,71	0,80	4,9	-0,4	53
	Cu-ETP1 nach DIN EN 13602, blank	6	1548	0,08	4,2	3,14	0,80	5,9	-0,4	76
Isolierung	Weich-PVC, kältebeständig	10	2510	0,08	5,2	1,85	1,00	7,3	-0,6	124
isolierung	weich-r vc, kaltebestalluig	16	4033	0,08	6,7	1,16	1,00	8,8	-0,6	198
Spozialla E	igenschaften	25	3169	0,11	8,0	0,743	1,20	10,5	-0,6	298
spezielle E	igenschaften									

Weitere Querschnitte und Litzenkonstruktionen auf Anfrage.

FLRYK mit dünnwandiger PVC-Isolierung

kältebeständig

				Leite	raufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt ⁶	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20 °C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperati	urbereich (3.000 h)	0,5	16	0,21	1,0	37,1	0,22	1,6	-0,2	6
_50 °C h	ois +105 °C	1	32	0,21	1,4	18,5	0,30	2,1	-0,2	12
30 C B	713 1 103 C	1,5	30	0,26	1,7	12,7	0,24	2,4	-0,3	16
Aufbau/V	Verkstoffe	2,5	50	0,26	2,1	7,6	0,70	3,7	-0,4	30
Leiter	Weichgeglühtes Elektrolytkupfer	Weitere	Querschnit	te und Litze	enkonstrukt	ionen auf Anf	rage.			

FLRY mit dünnwandiger PVC-Isolierung

Typ A / Typ B

				Le	eiteraufba	u	Isolierung		Kabel	
				ı	ı			Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte ⁶	Einzel- draht-Ø		Elektr. Widerstand bei 20°C blank/verzinnt	dicke		zu- lässige Abwei-	Gewicht
				max.	max.	max.	min.	max.	chung	ca.
	(2.0001)	mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
remperatu	rbereich (3.000 h)	FLRY – Ty	р А	<u> </u>						
-40 °C b	is +105 °C	0,22	7	0,21	0,7	84,8 / 86,5	0,20	1,2	-0,1	3
		0,35 ⁶⁶	7	0,26	0,8	54,4 / 55,5 ⁶⁶⁶	0,20	1,3	-0,1	5
Aufbau / W	/erkstoffe	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
Leiter	Weichgeglühtes Elektrolytkupfer	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	9
Letter	, ,	1 25	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	11
	Cu-ETP1 nach DIN EN 13602,	1,25	19 19	0,3	1,7	14,9 / 15,9	0,24	2,3	-0,2	15
	blank oder verzinnt	1,5	19	0,32	1,7 2,0	12,7 / 13,0 9,42 / 9,69	0,24	2,4	-0,2 -0,3	22
	Leiteraufbau gemäß ISO 6722-1	2,5	19	0,38	2,0	7,6 / 7,82	0,28	3	-0,3	26
solierung	Weich-PVC mit Eigenschaften	FLRY – Ty		0,11	2,2	1,011,02	0,20		0,5	
	gemäß ISO 6722-1, Klasse B	0,35	12	0,21	0,9	54,4 / 55,5 ⁶⁶⁶	0,20	1,4	-0,2	5
	gerrials 130 0/22-1, Masse B	0,5	16	0,21	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
Normen / S	pezifikationen	0,75	24	0,21	1,2	24,7 / 25,4	0,24	1,9	-0,2	9
	•	— 1	32	0,21	1,35	18,5 / 19,1	0,24	2,1	-0,2	11
BMW GS 95	007-1-1 · VW 60306-1 · DBL 6312	1,25	16	0,33	1,7	14,9 / 15,9	0,24	2,3	-0,2	14
Ford ES-AU	5T-1A348 · LV 112-1 · MAN 3135	1,5	30	0,26	1,7	12,7 / 13,0	0,24	2,4	-0,2	16
BOSCH 5 99	98 340 · FIAT 91107/18	2	28	0,31	2,0	9,42 / 9,69	0,28	2,8	-0,3	23
		2,5	50	0,26	2,2	7,6 / 7,8	0,28	3,0	-0,3	26
		3	45	0,31	2,4	6,15 / 6,36	0,32	3,4	-0,3	34
		4	56	0,31	2,75	4,71 / 4,85	0,32	3,7	-0,3	42
		5	65	0,33	3,1	3,94 / 4,02	0,32	4,2	-0,3	52
		6 8	84 50	0,31	3,3	3,14 / 3,23	0,32	4,3	-0,3	61
		10	80	0,46	4,3 4,5	2,38 / 2,52 1,82 / 1,85	0,32 0,48	5,0	-0,4 -0,4	108
		12	96	0,41	5,4	1,52 / 1,63	0,48	6,5	-0,4	122
		16	126	0,41	5,5	1,16 / 1,18	0,52	7,0	-0,5	170
		20	152	0,41	6,9	0,955 / 0,999	0,52	7,8	-0,8	194

- Richtwert, Abweichungen bei der Drahtanzahl ≥ 6,0 mm² sind zulässig (±5 %).
 - Dieser Querschnitt mit verzinntem Litzenleiter ist für die Schneid-/Klemmtechnik geeignet. 66 Auch mit den Widerstandswerten 52,0/53,1 m Ω/m blank/verzinnt erhältlich.

196 0,41 7,0 0,743 / 0,757 0,52 8,7 -0,8 265

Spezielle Eigenschaften

Isolierung Weich-PVC, kältebeständig

Kältewickelprüfung nach ISO 6722-1 bei –50 °C Kurzzeit- und Langzeitalterung gemäß ISO 6722-1, Klasse B

Cu-ETP1 nach DIN EN 13602, blank Leiteraufbau gemäß ISO 6722-1

Normen/Spezifikationen

Bosch 5 998 342...

FLRYW mit dünnwandiger PVC-Isolierung

Typ A / Typ B, hochwärmedruckfest

				Le	eiteraufba	u	Isolierung		Kabel	
								Auß	len-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte ⁶	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20 °C blank/verzinnt max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	FLRYW -	Тур А							
_40 °C h	is +125 °C	0,35	7	0,26	0,8	54,4 / 55,5 ⁶⁶	0,20	1,3	-0,1	5
40 C D	13 1 123 C	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
Aufbau / W	/erkstoffe	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	9
		- 1	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	11
Leiter	Weichgeglühtes Elektrolytkupfer	1,25	19	0,30	1,7	14,9 / 15,9	0,24	2,3	-0,2	12
	Cu-ETP1 nach DIN EN 13602,	1,5	19	0,32	1,7	12,7 / 13,0	0,24	2,4	-0,2	16
	blank oder verzinnt	2	19	0,38	2,0	9,42 / 9,69	0,28	2,8	-0,3	22
	Leiteraufbau gemäß ISO 6722-1	FLRYW -		1					_	
I I!	•	0,35	12	0,21	0,9	54,4 / 55,5 ⁶⁶	0,20	1,4	-0,2	5
Isolierung	Weich-PVC mit Eigenschaften	0,5	16	0,21	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
	gemäß ISO 6722-1, Klasse C	0,75	24	0,21	1,2	24,7 / 25,4	0,24	1,9	-0,2	9
		1 25	32	0,21	1,35	18,5 / 19,1	0,24	2,1	-0,2	11
Spezielle E	igenschaften	1,25	16	0,33	1,7	14,9 / 15,9	0,24	2,3	-0,2	12
Wärmedi	ruckbeständige Leitung	1,5	30	0,26	1,7	12,7 / 13,0	0,24	2,4	-0,2	16
	t für hochwärmedruckfeste	2,5	28 50	0,31	2,0	9,42 / 9,69 7,6 / 7,8	0,28	2,8 3,0	-0,3 -0,3	22
-		3	45	0,20	2,2	6,15 / 6,36	0,28	3,4	-0,3	33
Anwendi	ungen im Motorraum	4	56	0,31	2,75	4,71 / 4,85	0,32	3,7	-0,3	42
N / 6	· : : :	5	65	0,33	3,1	3,94 / 4,02	0,32	4,2	-0,3	50
Normen / S	Spezifikationen	- 6	84	0,31	3,3	3,14 / 3,23	0,32	4,3	-0,3	61
DBL 6312 · F	Ford ES-AU5T-1A348	8	50	0,46	4,3	2,38 / 2,52	0,32	5,0	-0,4	82
		10	80	0,41	4,5	1,82 / 1,85	0,48	5,8	-0,4	108
		12	96	0,41	5,4	1,52 / 1,6	0,48	6,5	-0,7	120
		16	126	0,41	5,5	1,16 / 1,18	0,52	7,0	-0,5	170
		20	152	0,41	6,9	0,955 / 0,999	0,52	7,8	-0,8	192
		25	196	0,41	7,0	0,743 / 0,757	0,52	8,7	-0,8	265

 $^{^{6}}$ Richtwert, Abweichungen bei der Drahtanzahl \geq 6,0 mm 2 sind zulässig (±5 %).

 $^{^{66}}$ Auch mit den Widerstandswerten 52,0/53,1 m Ω/m blank/verzinnt erhältlich.

FLR4Y mit dünnwandiger PA-Isolierung

Typ A / Typ B

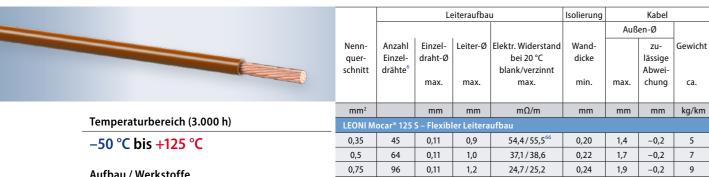
			L	eiteraufba	u		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter- Ø max.	Elektr. Widerstand bei 20 °C blank/verzinnt max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	FLR4Y –	Тур А							
_40 °C h	is +105 °C	0,35	7	0,26	0,8	54,4 / 55,5 ⁶	0,20	1,3	-0,1	4
40 C D	13 1 103 C	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	6
Aufbau / W	lerkstoffe	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	8
		1	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	11
Leiter	Weichgeglühtes Elektrolytkupfer	1,5	19	0,32	1,7	12,7 / 13,0	0,24	2,4	-0,2	15
	Cu-ETP1 gemäß DIN EN 13602,	2,5	19	0,41	2,2	7,6 / 7,8	0,28	3,0	-0,3	24
	blank oder verzinnt	FLR4Y –	Тур В							
		0,35	12	0,21	0,9	54,4 / 55,5 ⁶	0,20	1,4	-0,2	4
	Leiteraufbau gemäß ISO 6722-1	0,5	16	0,21	1,0	37,1 / 38,2	0,22	1,6	-0,2	6
Isolierung	PA (Polyamid)	0,75	24	0,21	1,2	24,7 / 25,4	0,24	1,9	-0,2	8
		1	32	0,21	1,35	18,5 / 19,1	0,24	2,1	-0,2	11
Spezielle E	igenschaften	1,5	30	0,26	1,7	12,7 / 13,0	0,24	2,4	-0,2	15
Harvorra	gende Kraftstoffbeständigkeit	2,5	50	0,26	2,2	7,6 / 7,8	0,28	3,0	-0,3	24
	rs geeignet als Kraftstoffniveau-	4	56	0,31	2,75	4,71 / 4,8	0,32	3,7	-0,3	40

 6 Auch mit den Widerstandswerten 52,0 / 53,1 m Ω/m blank/verzinnt erhältlich.

FLRYH mit dünnwandiger PVC-Isolierung

geber-Leitung

				Leit	eraufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte ⁶	Einzel- draht- Ø ⁶⁶⁶ max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	ırbereich (3.000 h)	0,35	45	0,11	0,9	54,4 ⁶⁶	0,20	1,4	-0,2	5
_40 °C h	is +105 °C	0,5	64	0,11	1,0	37,1	0,22	1,6	-0,2	6
40 C N	113 1 103 C	0,75	96	0,11	1,2	24,7	0,24	1,9	-0,2	9
Aufbau / V	Varkstoffa	1	126	0,11	1,35	18,5	0,24	2,1	-0,2	12
		1,5	196	0,11	1,7	12,7	0,24	2,4	-0,2	16
Leiter	Weichgeglühtes Elektrolytkupfer	2,5	315	0,11	2,2	7,6	0,28	3,0	-0,3	27
	Cu-ETP1 nach DIN EN 13602,	4	126	0,21	2,75	4,71	0,32	3,7	-0,3	42
	feindrähtig blank	6	189	0,21	3,4	3,1	0,32	4,3	-0,3	68
I 1:	-	10	324	0,21	4,5	1,82	0,48	5,8	-0,4	118
Isolierung	Weich-PVC, mit Eigenschaften	16	518	0,21	5,5	1,16	0,52	7,0	-0,5	174
	gemäß ISO 6722-1, Klasse B	25	798	0,21	7,0	0,743	0,64	8,8	-0,6	263
		35	1107	0,21	8,3	0,527	0,8	10,5	-0,7	377
Spezielle E	igenschaften	6 Gei	ingfügige i	Abweichun	ngen bei de	r Drahtanzahl s	ind zulässig (± 5 %)		
Flexibler Li	tzenaufbau	66 Au	ch mit eine	m Widersta	and von 52,0	erstandes und 0 mΩ/m erhältl		zeldrahtd	urchmess	ers.
Normen/S	Spezifikationen	Au	n in hochf	exibler Au	sführung er	naitlich.				


LEONI LEONI www.leoni-automotive-cables.com www.leoni-automotive-cables.com

28 | Fahrzeugleitungen · einadrig

Fahrzeugleitungen · einadrig | 29 | LEONI Mocar*

LEONI Mocar® 125 S mit TPE-S-Isolierung

für flexible und Standardanwendungen

Aui bau /	WEIKSTOTIE
Leiter	Weichgeglühtes Flektrolytkı

Cu-ETP1 nach DIN EN 13602, blank oder verzinnt Leiteraufbau gemäß ISO 6722-1

Isolierung TPE-S Isolierung mit Eigenschaften in Anlehnung an LV112-1, ISO 6722-1, Klasse C

Spezielle Eigenschaften

Leitungen für flexible Applikationen Sehr gute Biegewechselbeständigkeit Einsatz: Tür, Verdeck, Hecklappe, Schiebetür

Normen/Spezifikationen

LV 112-1 · FORD ES 5M5T-14401

1,5	192	0,11	1,7	12,7 / 13,0	0,24	2,4	-0,2	16
2,5	320	0,11	2,2	7,6/7,82	0,28	3,0	-0,3	26
4	120	0,20	2,75	4,71 / 4,85	0,32	3,7	-0,3	42
	0.40-	c c						
LEONI M	ocar [®] 125	5 – Standa	ara-Leiter	autbau				
0,35	ocar* 125 7	0,26	0,8	54,4/55,5 ⁶⁶	0,20	1,3	-0,1	5
					0,20 0,22	1,3	-0,1 -0,2	5
0,35	7	0,26	0,8	54,4/55,5 ⁶⁶	·	-		
0,35	7 19	0,26 0,19	0,8 1,0	54,4/55,5 ⁶⁶ 37,1/38,6	0,22	1,6	-0,2	7

7,6/7,82

⁶ Geringfügige Abweichungen sind zulässig:

126

0,11

Bei max. 40 Einzeldrähten ±1 %, bei mehr als 40 Einzeldrähten ±5 %.

0,21 2,2

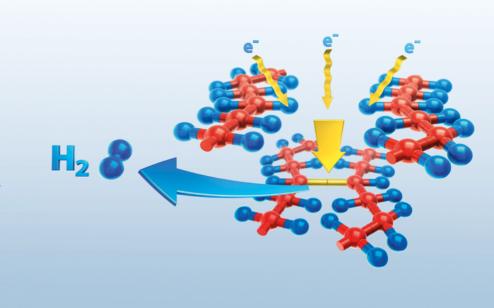
⁶⁶ Auch mit den Widerstandswerten 52,0/53,1 m Ω /m blank/verzinnt erhältlich.

LEONI Mocar® 125 P mit PP-Isolierung

Typ A / Typ B, wärmebeständig

				Le	iteraufbau		Isolierung		Kabel	
	nperaturbereich (3.000 h) 0 °C bis +125 °C Sbau / Werkstoffe The Weichgeglühtes Elektrolytkunfer							Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke ⁶ min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	LEONI M	locar® 125	P – Typ A						
40 °C h	ic +125 °C	0,35	7	0,26	0,8	54,4 ⁶⁶	0,20	1,3	-0,1	5
-40 C D	15 ±125 C	0,5	19	0,19	1,0	37,1	0,22	1,6	-0,2	7
		0,75	19	0,23	1,2	24,7	0,24	1,9	-0,2	9
Aufbau / W	/erkstoffe	1	19	0,26	1,35	18,5	0,24	2,1	-0,2	11
		1,5	19 19	0,32	1,7 2,0	12,7	0,24	2,4	-0,2	16 22
Leiter	Weichgeglühtes Elektrolytkupfer	2,5	19	0,38	2,0	9,42 7,6	0,28	3,0	-0,3 -0,3	26
	Cu-ETP1 nach DIN EN 13602, blank	-	locar® 125		2,2	7,0	0,20	3,0	-0,5	20
	Leiteraufbau gemäß ISO 6722-1	0,35	12	0,21	0,9	54,4 ⁶⁶	0,20	1,4	-0,2	5
	· ·	0,5	16	0,21	1,0	37,1	0,22	1,6	-0,2	7
Isolierung	PP-FR (Polypropylen flammwidrig),	0,75	24	0,21	1,2	24,7	0,24	1,9	-0,2	9
	halogenarm	1	32	0,21	1,35	18,5	0,24	2,1	-0,2	11
	naiogenami	1,5	30	0,26	1,7	12,7	0,24	2,4	-0,2	16
		2	28	0,31	2,0	9,42	0,28	2,8	-0,3	22
Spezielle E	igenschaften	2,5	50	0,26	2,2	7,6	0,28	3,0	-0,3	26
Kannzaic	hnung nach Kundenvorschrift	3	45	0,31	2,4	6,15	0,32	3,4	-0,3	33
	•	4	56	0,31	2,75	4,71	0,32	3,7	-0,3	42
Einsatz ir	n Motorraum	6 10	84 80	0,31	3,3 4,5	3,14 1,82	0,32 0,48	4,3 5,8	-0,3 -0,4	61 104
		16	126	0,41	5,5	1,16	0,48	7,0	-0,4	158
Normen / S	pezifikationen	25	196	0,41	7,8	0,743	0,52	8,7	-0,5	243
	pezinkationen	35	276	0,41	9,0	0,527	1,04	11,6	-0,6	351
Ford ES-AU	5T-1A348 · FIAT 91107/17	50	396	0,41	10,5	0,368	1,20	13,5	-0,6	490
	-05-009/N · VW 60306-1	70	360	0,51	11,6	0,259	1,20	14,6	-0,8	692

- Auch mit erhöhter Wanddicke der Isolierung lieferbar.
- Auch mit den Widerstandswerten 52,0/53,1 m Ω /m blank/verzinnt erhältlich.


Strahlen-Vernetzung

Als weltweiter Technologieführer ergänzt und optimiert LEONI seine entwickelten und eingesetzten Kunststoffe durch Strahlenvernetzung.

Polyethylen-Makromoleküle lassen sich dreidimensional zu PE-X oder XLPE vernetzen.

Strahlenvernetzte Kunststoffe zeichnen sich nicht nur durch eine verbesserte Wärmedruckverformbarkeit aus, sie sind zudem sehr gut

temperaturbeständig chemikalienbeständig lösungsmittelfest (erhöhte Quellbeständigkeit) biegefest abriebfest.

7

2,1

NNI Mocar 30 Fahrzeugleitungen • einadrig 31 LEONI Mocar

LEONI Mocar® 125 XS mit vernetzter PE-Isolierung

Typ A / Typ B, wärmebeständig

				Leit	eraufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø	Elektr. Widerstand bei 20°C	Wand- dicke		zu- lässige Abwei-	Gewicht
				max.	max.	max.	min.	max.	chung	ca.
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	LEONI N	locar® 125	XS – Typ A						
-40 °C b	is +125 °C	0,22	7	0,21	0,7	84,8	0,20	1,2	-0,1	3
10 C D	13 1 123 C	0,35	7	0,26	0,8	54,4 ⁶	0,20	1,3	-0,1	5
Aufbau / W	Jerkstoffe	0,5	19	0,19	1,0	37,1	0,22	1,6	-0,2	7
		0,75	19	0,23	1,2	24,7	0,24	1,9	-0,2	9
Leiter	Weichgeglühtes Elektrolytkupfer	1	19	0,26	1,35	18,5	0,24	2,1	-0,2	11
	Cu-ETP1 gemäß DIN EN 13602, blank	1,5	19	0,32	1,7	12,7	0,24	2,4	-0,2	16
	Leiteraufbau gemäß ISO 6722-1	2	19	0,38	2,0	9,42	0,28	2,8	-0,3	22
	3	2,5	19	0,41	2,2	7,6	0,28	3,0	-0,3	26
Isolierung	PE-X (Polyethylen silanvernetzt) mit	LEONI N	locar® 125	XS – Typ B						
	Eigenschaften gem. ISO 6722-1, Klasse C	0,35	12	0,21	0,9	54,4 ⁶	0,20	1,4	-0,2	5
		0,5	16	0,21	1,0	37,1	0,22	1,6	-0,2	7
Spezielle E	igenschaften	0,75	24	0,21	1,2	24,7	0,24	1,9	-0,2	9
Einsatz im I	Motorraum	1	32	0,21	1,35	18,5	0,24	2,1	-0,2	11
LIIIJULZ IIII I	viotorraum	1,5	30	0,26	1,7	12,7	0,24	2,4	-0,2	16
Norman / S	pezifikationen	2	30	0,31	2,0	9,42	0,28	2,8	-0,3	22
	PCZIIIKULIOIIEII	2,5	50	0,26	2,2	7,6	0,28	3,0	-0,3	26
ISO 6722-1		3	45	0,31	2,4	6,15	0,32	3,4	-0,3	33
		4	56	0,31	2,75	4,71	0,32	3,7	-0,3	42
		6	84	0,31	3,3	3,14	0,32	4,3	-0,3	61

 $^{^6}$ Auch mit einem Widerstand von 52,0 m Ω/m erhältlich.

LEONI Mocar® 125 XE mit vernetzter PE-Isolierung

Typ A / Typ B, wärmebeständig

				Leit	eraufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewich
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	LEONI N	locar® 125	XE – Typ A						
_40 °C h	is +125 °C	0,22	7	0,21	0,7	84,8	0,20	1,2	-0,1	3
10 C D	13 1 123 C	0,35	7	0,26	0,8	54,4 ⁶	0,20	1,3	-0,1	5
Aufbau / W	/erkstoffe	0,5	19	0,19	1,0	37,1	0,22	1,6	-0,2	7
		0,75	19	0,23	1,2	24,7	0,24	1,9	-0,2	9
Leiter	Weichgeglühtes Elektrolytkupfer	1	19	0,26	1,35	18,5	0,24	2,1	-0,2	11
	Cu-ETP1 nach DIN EN 13602, blank	1,5	19	0,32	1,7	12,7	0,24	2,4	-0,2	16
	Leiteraufbau gemäß ISO 6722-1	2	19	0,38	2,0	9,42	0,28	2,8	-0,3	22
I I!	_	2,5	19	0,41	2,2	7,6	0,28	3,0	-0,3	26
Isolierung	PE-X (Polyethylen strahlenvernetzt)	LEONI N	locar® 125	XE – Typ B						
	mit Eigenschaften gemäß ISO 6722-1,	0,35	12	0,21	0,9	54,4 ⁶	0,20	1,4	-0,2	5
	Klasse C	0,5	16	0,21	1,0	37,1	0,22	1,6	-0,2	7
		0,75	24	0,21	1,2	24,7	0,24	1,9	-0,2	9
Spezielle E	igenschaften	1	32	0,21	1,35	18,5	0,24	2,1	-0,2	11
-		1,5	30	0,26	1,7	12,7	0,24	2,4	-0,2	16
Einsatz im I	Motorraum	2	28	0,31	2,0	9,42	0,28	2,8	-0,3	22
		2,5	50	0,26	2,2	7,6	0,28	3,0	-0,3	26
Normen/S	pezifikationen	3	45	0,31	2,4	6,15	0,32	3,4	-0,3	33
ISO 6722-1	· LV 112-1 · VW 60306-1	4	56	0,31	2,75	4,71	0,32	3,7	-0,3	42
		6	84	0,31	3,3	3,14	0,32	4,3	-0,3	61

 $^{^6}$ Auch mit einem Widerstand von 52,0 m Ω/m erhältlich.

LEONI Mocar® 150 A mit TPE-E-Isolierung

Typ A / Typ B, wärmebeständig

				Leit	eraufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø	Elektr. Widerstand bei 20 °C	Wand- dicke min.		zu- lässige Abwei-	Gewicht
				max.	max.	max.	min.	max.	chung	ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	ırbereich (3.000 h)	LEONI M	locar® 150	A – Typ A						
_40 °C h	is +150 °C	0,22	7	0,21	0,7	84,8	0,20	1,2	-0,1	3
40 C 6	113 T 150 C	0,35	7	0,26	0,8	54,4 ⁶	0,20	1,3	-0,1	5
Aufbau / V	Verkstoffe	0,5	19	0,19	1,0	37,1	0,22	1,6	-0,2	6
		0,75	19	0,23	1,2	24,7	0,24	1,9	-0,2	9
Leiter	Weichgeglühtes Elektrolytkupfer	1	19	0,26	1,35	18,5	0,24	2,1	-0,2	11
	Cu-ETP1 nach DIN EN 13602,	1,5	19	0,32	1,7	12,7	0,24	2,4	-0,2	16
	blank oder verzinnt	2	19	0,37	2,0	9,42	0,28	2,8	-0,3	22
		2,5	19	0,41	2,2	7,6	0,28	3,0	-0,3	26
	Leiteraufbau gemäß ISO 6722-1	LEONI N	locar® 150	A – Typ B						
Isolierung	TPE-E (Thermoplastisches Polyester-	0,35	12	0,21	0,9	54,4 ⁶	0,20	1,4	-0,2	5
	Elastomer) mit Eigenschaften in	0,5	16	0,21	1,0	37,1	0,22	1,6	-0,2	6
	_	0,75	24	0,21	1,2	24,7	0,24	1,9	-0,2	9
	Anlehnung an ISO 6722-1, Klasse D	1	32	0,21	1,35	18,5	0,24	2,1	-0,2	11
Cnomialla F	ii aans shaftan	1,5	30	0,26	1,7	12,7	0,24	2,4	-0,2	16
Spezielle E	igenschaften	2	30	0,31	2,0	9,42	0,28	2,8	-0,3	22
Eingesch	ränkte Hydrolysebeständigkeit	2,5	50	0,26	2,2	7,6	0,28	3,0	-0,3	26
		4	56	0,31	2,75	4,71	0,32	3,7	-0,3	42
		6	84	0,31	3,3	3,14	0,32	4,3	-0,3	61

 $^{^6}$ Auch mit einem Widerstand von 52,0 m Ω/m erhältlich.

LEONI Mocar® 150 C mit TPE-E-Isolierung

Typ A / Typ B, wärmebeständig

				Leit	eraufbau		Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewich
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	LEONI M	ocar® 150	C – Typ A						
-40 °C b	is +150 °C	0,22	7	0,21	0,7	84,8	0,20	1,2	-0,1	3
		0,35	7	0,26	0,8	54,4 ⁶	0,20	1,3	-0,1	4
Aufbau / W	/erkstoffe	0,5	19	0,19	1,1	37,1	0,22	1,6	-0,2	6
		0,75	19	0,24	1,2	24,7	0,24	1,9	-0,2	9
Leiter	Weichgeglühtes Elektrolytkupfer	1	19	0,26	1,35	18,5	0,24	2,1	-0,2	12
	Cu-ETP1 nach DIN EN 13602,	1,5	19	0,32	1,7	12,7	0,24	2,4	-0,2	16
	blank oder verzinnt	2	19	0,37	2,0	9,42	0,28	2,8	-0,3	22
	Leiteraufbau gemäß ISO 6722-1	2,5	19 locar® 150	0,41	2,2	7,6	0,28	3,0	-0,3	26
Isolieruna	TPE-E (Thermoplastisches Polyester-	0,35	12	0,21	0,9	54,4 ⁶	0,20	1,4	-0,2	5
isolierung		0,55	16	0,21	1,0	37,1	0,20	1,6	-0,2	6
	Elastomer) mit Eigenschaften in	0,75	24	0,21	1,2	24,7	0,24	1,9	-0,2	9
	Anlehnung an ISO 6722-1, Klasse D	1	32	0,21	1,35	18,5	0,24	2,1	-0,2	11
		1,5	30	0,26	1,7	12,7	0,24	2,4	-0,2	16
Spezielle E	igenschaften	2	30	0,31	2,0	9,42	0,28	2,8	-0,3	22
Hydrolys	ebeständig	2,5	50	0,26	2,2	7,6	0,28	3,0	-0,3	26
Fingesch	ränkte Beständigkeit gegen Batteriesäure	3	45	0,31	2,4	6,15	0,32	3,4	-0,3	32
	3 3 3	4	56	0,31	2,8	4,71	0,32	3,7	-0,3	41
Einsatz ir	n Scheinwerferbereich	6	84	0,31	3,4	3,14	0,32	4,3	-0,3	61

⁶ Auch mit einem Widerstand von 52,0 mΩ/m erhältlich.

32 | Fahrzeugleitungen · einadrig Fahrzeugleitungen · einadrig 33 LEONI Mocar*

LEONI Mocar® 180 E mit ETFE-Isolierung

Typ A / Typ B, hochtemperaturbeständig

					Leiteraufb	au	Isolierung		Kabel	
								Auß	Ben-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø	Elektrischer Widerstand bei 20°C blank/verzinnt	Wand- dicke ⁶		zu- lässige Abwei-	Gewicht
				max.	max.	max.	min.	max.	chung	ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	LEONIA	/locar® 180	0 E – Typ <i>i</i>	Ą					
_65 °C h	is +180 °C	0,35	7	0,26	0,8	54,4 / 55,5 ⁶⁶	0,20	1,3	-0,1	5
05 C B	13 1 100 €	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	6
Aufbau / W	Jerkstoffe	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	9
		1	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	12
Leiter	Weichgeglühtes Elektrolytkupfer	1,5	19	0,32	1,7	12,7 / 13,0	0,24	2,4	-0,2	17
	Cu-ETP1 nach DIN EN 13602,	2,5	19	0,41	2,2	7,6 / 7,82	0,28	3,0	-0,3	28
	blank, verzinnt oder versilbert	LEONIA	Aocar® 180	DE – Typ I						
	•	0,35	12	0,21	0,9	54,4 / 55,5 ⁶⁶	0,20	1,4	-0,2	5
	Feindrähtige Litze gemäß ISO 6722-1	0,5	16	0,21	1,0	37,1 / 38,2	0,22	1,6	-0,2	6
Isolierung	ETFE (Ethylen-Tetrafluorethylen) mit	0,75	24	0,21	1,2	24,7 / 25,4	0,24	1,9	-0,2	9
	Eigenschaften gem. ISO 6722-1, Klasse E	1	32	0,21	1,35	18,5 / 19,1	0,24	2,1	-0,2	12
	g	1,5	30	0,26	1,7	12,7 / 13,0	0,24	2,4	-0,2	17
Spezielle E	igenschaften	2,5	50	0,26	2,2	7,6 / 7,82	0,28	3,0	-0,3	28
		4	56	0,31	2,75	4,71 / 4,85	0,32	3,7	-0,3	42
Gute me	chanische und thermische Eigen-	6	84	0,31	3,3	3,14	0,32	4,3	-0,3	61
schaften	schaften mit ausgezeichneter Medien-			anddicke	auf Anfrac	ie (ISO 6722-1).				

⁶ Ultradünne Wanddicke auf Anfrage (ISO 6722-1).

Normen/Spezifikationen

beständigkeit

DBL 6312 · VW 60306-1 · LV 112-1

Besonders geeignet zur Verdrahtung innerhalb des Motorraums und als Kraftstoffniveaugeber-Leitung

LEONI Mocar® 150 XE, 125 XC and 125 G

Bezeichnung	Bereich Nennquerschnitt mm2	Design Litze z.B. symm., asym., flexibel	Isolationsmaterial	Wanddicke	Norm Temperaturbereich	Aufbau gemäß Normen / OEM Spezifikationen möglich 1)
LEONI Mocar® 150 XE	0,35 - 70	– symmetrisch – asymmetrisch – flexibel	XLPE (Polyethylen elektronenstrahlenvernetzt), halogenfrei (ZH)	dickwandigdünnwandig	-40 °C - 150 °C	ISO 19642-3 BMW GS 95007-1–1 FORD ES-AU5T-1A348-AA
		TICALDET	naiogemen (211)			GMW 15626 MBN LV 112-1
LEONHAL	0.25 6		V(DE (D	1 1.	10.05 105.05	VW 60306-1
LEONI Mocar®	0,35 - 6	– symmetrisch	XLPE (Polyethylen, peroxi-	-dünnwandig	-40 °C - 125 °C	ISO 19642-3
125 XC		– asymmetrisch – flexibel	disch vernetzt), halogenfrei			FCA MS.90034 FORD ES-AU5T-1A348-AA
		– Hexibei				GMW 15626
LEONI Mocar®	8 – 95	– symmetrisch	XLPO weich /XLPE (Polyole-	– dickwandig	-40 °C - 125 °C	ISO 19642-3
125 G		 asymmetrisch 	fin, weich, vernetzt / Poly-	-dünnwandig		FCA MS.90034
		– flexibel	ethylen, vernetzt) oder			FORD ES-AU5T-1A348-AA
			XLPO extraweich /XLPE (Poly-			GMW 15626
			olefin, extraweich, vernetzt / Polyethylen, vernetzt)			

LEONI Mocar® 200 G mit Silikon-Isolierung

hochtemperaturbeständig

				Leit	eraufbau	Г	Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	ırbereich (3.000 h)	0,35	12	0,21	0,9	54,4 ⁶	0,50	2,0	-0,2	7
_80 °C h	°C bis +200 °C		16	0,21	1,0	37,1	0,60	2,3	-0,2	9
00 C D	13 1200 €	0,75	24	0,21	1,2	24,7	0,60	2,5	-0,2	12
Aufhau / W	Verkstoffe	1	32	0,21	1,35	18,5	0,60	2,7 -0,2		14
Auibau / V	au / Werkstoffe		30	0,26	1,7	12,7	0,60	3,1	-0,3	20
Leiter	Weichgeglühtes Elektrolytkupfer	2,5	50	0,26	2,2	7,6	0,70	3,8	-0,3	31
	Cu-ETP1 nach DIN EN 13602, blank	4	56	0,31	2,8	4,71	0,80	4,8	-0,4	50
	(auch in feindrähtiger Ausführung	6	84	0,31	3,4	3,1	0,80	5,4	-0,4	71
		10	80	0,41	4,5	1,82	1,00	7	-0,5	118
	erhältlich)	16	126	0,41	5,8	1,16	1,00	8,4	-0,6	180
Isolierung	SIR, Silikon-Gummi mit Eigenschaften	25	196	0,41	7,2	0,743	1,30	10,4	-0,6	276
	gemäß ISO 6722-1, Klasse F	35	276	0,41	8,5	0,527	1,30	11,9	-0,8	379
	g	50	396	0,41	10,5	0,368	1,50	14,3	-0,8	546
Spezielle F	igenschaften	70	360	0,51	12,5	0,259	1,50	16,7	-1,2	753
		95	457	0,51	14,8	0,196	1,60	19,2	-1,2	999

Gute thermische Eigenschaften und hohe Flexibilität bei niedrigen Temperaturen

LEONI Mocar® 200 G AL mit Silikon-Isolierung

Aluminiumleiter, hochtemperaturbeständig

	Sani V.			Leit	eraufbau		Isolierung		Kabel	
The state of the s	Miller .							Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
	Million Comment of the Comment of th									
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperati	ırbereich (3.000 h)	10	50	0,52	4,5	3,03	0,80	6,5	-0,6	51
_80 °C h	-80 °C bis +200 °C		78	0,52	5,8	1,93	0,80	8,3	-0,6	85
00 C	13 1200 €	25	122	0,52	7,2	1,24	1,04	10,4	-1,0	131
Aufbau / V	Verkstoffe	35	172	0,52	8,5	0,878	1,04	11,6	-2,0	150
		50	247	0,52	10,5	0,613	1,20	13,5	-2,0	209
Leiter	Aluminium 99,7%	70	351	0,52	12,5	0,432	1,20	15,5	-2,0	265
	Leiteraufbau gemäß ISO 6722-2	95	463	0,52	14,8	0,327	1,28	18,0	-2,0	370
Isolierung	SIR, Silikon-Gummi mit Eigenschaften	120	305	0,72	16,5	0,255	1,28	19,7	-2,0	452
	gemäß ISO 6722-2, Klasse F									

Spezielle Eigenschaften

Gute thermische Eigenschaften Wesentliche Gewichtseinsparung gegenüber Kupfer

Auch mit den Widerstandswerten 52,0/53,1 m Ω /m blank/verzinnt erhältlich.

 $^{^6}$ Auch mit einem Widerstand von 52,0 m Ω/m erhältlich.

34 | Fahrzeugleitungen · einadrig

LEONI Mocar® 210 F mit FEP-Isolierung

Typ A / Typ B, hochtemperaturbeständig

Spezielle Eigenschaften

des Motorraums

Normen/Spezifikationen

LV 112-1 · VW 60306-1 · PSA B25 1110

				Leiteraufb	au	Isolierung		Kabel	
							Auß	en-Ø	
	Nenn- quer-	Anzahl Einzel-	Einzel- draht-Ø	Leiter-Ø	Elektr. Widerstand bei 20 °C	Wand- dicke ⁶		zu- lässige	Gewicht
	schnitt	drähte	max.	max.	blank/verzinnt max.	min.	max.	Abwei- chung	ca.
	mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
	LEONIA	∕locar® 21	0 F – Typ	A					
	0,35	7	0,26	0,8	54,4 / 55,5 ⁶⁶	0,20	1,3	-0,1	5
	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	10
	1	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	13
	1,5	19	0,32	1,7	12,7 / 13,0	0,24	2,4	-0,2	18
	2,5	19	0,41	2,2	7,6 / 7,82	0,28	3,0	-0,3	29
	LEONIA	∕locar® 21	0 F <i>–</i> Typ						
	0,35	12	0,21	0,9	54,4 / 55,5 ⁶⁶	0,20	1,4	-0,2	5
-1	0,5	16	0,21	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
	0,75	24	0,21	1,2	24,7 / 25,4	0,24	1,9	-0,2	10
ß	1	32	0,21	1,35	18,5 / 19,1	0,24	2,1	-0,2	13
ı,	1,5	30	0,26	1,7	12,7 / 13,0	0,24	2,4	-0,2	18
	2,5	50	0,26	2,2	7,6 / 7,82	0,28	3,0	-0,3	29
	4	56	0,31	2,75	4,71 / 4,85	0,32	3,7	-0,3	44
	6	84	0,31	3,3	3,14	0,32	4,3	-0,3	61

⁶ Ultradünne Wanddicke auf Anfrage (ISO 6722-1).

ISO 6722-1, Klasse F

Gute mechanische und thermische Eigenschaf-

ten mit ausgezeichneter Medienbeständigkeit

Besonders geeignet zur Verdrahtung innerhalb

		quer- schnitt	Einzel- drähte	draht-Ø max.	max.	bei 20°C blank/verzinnt max.	dicke ⁶	max.	lässige Abwei- chung	ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	LEONIA	⁄locar® 21	0 F – Typ	A					
-65 °C h	is +210 °C	0,35	7	0,26	0,8	54,4 / 55,5 ⁶⁶	0,20	1,3	-0,1	5
05 C D	13 1210 €	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
Aufbau / W	Jerkstoffe	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	10
Autbau / W	reikstorie	1	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	13
Leiter	Weichgeglühtes Elektrolytkupfer	1,5	19	0,32	1,7	12,7 / 13,0	0,24	2,4	-0,2	18
	Cu-ETP1 nach DIN EN 13602, blank,	2,5	19	0,41	2,2	7,6 / 7,82	0,28	3,0	-0,3	29
	verzinnt, versilbert oder vernickelt	LEONIA	∕locar® 21	0 F <i>–</i> Typ	В					
	•	0,35	12	0,21	0,9	54,4 / 55,5 ⁶⁶	0,20	1,4	-0,2	5
	Feindrähtige Litze gemäß ISO 6722-1	0,5	16	0,21	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
Isolierung	FEP (Tetrafluorethylen-Hexafluor-	0,75	24	0,21	1,2	24,7 / 25,4	0,24	1,9	-0,2	10
	propylen) mit Eigenschaften gemäß	1	32	0,21	1,35	18,5 / 19,1	0,24	2,1	-0,2	13
	ISO 6722.1 Klasso E	1,5	30	0,26	1,7	12,7 / 13,0	0,24	2,4	-0,2	18

LEONI Mocar® 260 T mit PFA-Isolierung

hochtemperaturbeständig

					Leiterauf	bau	Isolierung		Kabel	
								Auß	Ben-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C blank/verzinnt max.	Wand- dicke ⁶ min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Tempera	turbereich (3.000 h)	0,35	7	0,26	0,8	54,4 / 55,5 ⁶⁶	0,20	1,3	-0,1	5
_80 °C	bis +260 °C	0,5	19	0,19	1,0	37,1 / 38,2	0,22	1,6	-0,2	7
-00 C	DI3 +200 C	0,75	19	0,23	1,2	24,7 / 25,4	0,24	1,9	-0,2	10
Aufhau	Werkstoffe	1	19	0,26	1,35	18,5 / 19,1	0,24	2,1	-0,2	13
Auidau/	werkstone	1,5	19	0,32	1,7	12,7 / 13,0	0,24	2,4	-0,2	18
Leiter	Weichgeglühtes Elektrolytkupfer	2,5	19	0,41	2,2	7,6 / 7,82	0,28	3,0	-0,3	29
	Cu-ETP1 nach DIN EN 13602, blank,	4	56	0,31	2,75	4,71 / 4,85	0,32	3,7	-0,3	44

Ultradünne Wanddicke auf Anfrage (ISO 6722-1).

ISO 6722-1

eine gleichwertige Alternative zu PTFE

verzinnt, versilbert oder vernickelt

mit Eigenschaften gemäß ISO 6722-1,

Leiteraufbau gemäß ISO 6722-1

Isolierung PFA (Perfluoralkoxy-Copolymer)

Hervorragende Chemikalienbeständigkeit

Aufgrund der hohen Temperaturbeständigkeit

Sehr gute mechanische Beständigkeit

Klasse H

Spezielle Eigenschaften

Normen/Spezifikationen

LEONI Mocar® 260 R mit PTFE-Isolierung

Typ A / Typ B, hochtemperaturbeständig

				Leite	eraufbau		Isolierung		Kabel	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	Auß max.	zu- lässige Abwei- chung	Gev
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg
Temperatu	ırbereich (3.000 h)	LEONI M	ocar® 260	R – Typ A						
_90 °C h	is +260 °C	0,22	7	0,21	0,7	87,9	0,20	1,2	-0,1	
70 C D	13 1200 C	0,35	7	0,27	0,8	56,8	0,20	1,35	-0,1	
Aufbau / W	Jorkstoffo	0,5	19	0,19	1,0	38,6	0,22	1,6	-0,2	
Auibau / V	reikstorie	0,75	19	0,24	1,2	25,7	0,24	1,9	-0,2	
Leiter	Weichgeglühtes Elektrolytkupfer	1	19	0,27	1,35	19,3	0,24	1,95	-0,2	
	Cu-ETP1 nach DIN EN 13602,	1,5	19	0,33	1,7	13,2	0,24	2,3	-0,2	
	Kupfer vernickelt	2,5	19	0,41	2,2	7,92	0,28	2,8	-0,3	
	•	LEONI N	ocar® 260	R – Typ B						
	Leiteraufbau gemäß ISO 6722-1	0,35	12	0,21	0,9	87,9	0,20	1,35	-0,1	
Isolierung	PTFE Polytetrafluorethylen mit Eigen-	0,5	16	0,21	1,0	56,8	0,22	1,6	-0,2	
	schaften gemäß ISO 6722-1, Klasse H	0,75	24	0,21	1,2	38,6	0,24	1,9	-0,2	
	5-marten gemas 55 0/ == 1,1 masse 11	1	32	0,21	1,4	25,7	0,24	1,95	-0,2	
Spezielle E	igenschaften	1,5	30	0,26	1,7	19,3	0,24	2,3	-0,2	
-		2,5	50	0,26	2,2	13,2	0,28	2,8	-0,3	
Hervorra	gende Chemikalienbeständigkeit	4	56	0,31	2,75	4,91	0,32	3,35	-0,3	
Sehr aut	e mechanische Beständigkeit	6	84	0,31	3,4	3,27	0,32	4,15	-0,3	

⁶⁶ Auch mit den Widerstandswerten 52,0/53,1 m Ω /m blank/verzinnt erhältlich.

Auch mit den Widerstandswerten 52,0/53,1 m Ω /m blank/verzinnt erhältlich.

TWP mit dünnwandiger PVC-Isolierung

				Leiter	aufbau		Isolie	erung	Ka	bel
							Wand	ldicke		
		Größe	Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø nom.	Leiter-Ø nom.	nom.	min.	Außen- Ø max.	Gewicht ca.
		AWG	mm²		mm	mm	mm	mm	mm	kg/km
Tempera	turbereich	22	0,35	7	0,25	0,76	0,40	0,33	1,7	5
_40 °C	bis +85 °C (3.000 h) +105 °C (48 h)	20	0,5	7	0,32	0,97	0,40	0,33	1,9	8
40 C	DIS 105 C (3.000 II) 1105 C (48 II)	18	0,8	16	0,25	1,17	0,40	0,33	2,2	11
Aufhau /	Werkstoffe	18	0,8	19	0,23	1,17	0,40	0,33	2,2	11
	Weikstolle	16	1,3	19	0,28	1,45	0,40	0,33	2,4	15
Leiter	Weichgeglühtes Elektrolytkupfer	14	2	19	0,36	1,8	0,40	0,33	2,7	22
	nach ASTM B3	12	3	19	0,45	2,29	0,46	0,38	3,3	34
	Leiteraufbau gem. Kundenspezifikation	10	5	19	0,57	2,87	0,50	0,43	4,0	53

Isolierung PVC, Isolierungsmaterial gemäß

SAE J 1128 / ESB-M1 L 120-A / MS-7889 / UTMS 12501

Spezielle Eigenschaften

Auch als GPT, HDT sowie verzinnt lieferbar

Normen/Spezifikationen

Amerikanische Normung: SAE J1128

TXL mit dünnwandiger, vernetzter PE-Isolierung

				Leitera	aufbau		Isolie	erung	Ka	bel
							Wand	ldicke		
		Größe	Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø			Außen- Ø	Gewich
					nom.	nom.	nom.	min.	max.	ca.
		AWG	mm²		mm	mm	mm	mm	mm	kg/km
Temperatu	rbereich (3.000 h)	22	0,35	7	0,25	0,76	0,40	0,33	1,7	5
-40 °C b	is +125 °C	20	0,5	7	0,32	0,97	0,40	0,33	1,9	8
		18 18	0,8	16	0,25	1,17	0,40	0,33	2,2	11
Aufbau/W	Aufbau / Werkstoffe		0,8 1,3	19 19	0,23	1,17 1,45	0,40	0,33	2,2	11 15
Leiter	Weichgeglühtes Elektrolytkupfer	16 14	2	19	0,26	1,43	0,40	0,33	2,7	22
	gemäß ASTM B3	12	3	19	0,45	2,29	0,46	0,38	3,3	34
	Leiteraufbau gem. Kundenspezifikation	10	5	19	0,57	2,87	0,50	0,43	4,0	53
Isolierung	XLPE (Polyethylen vernetzt),									
	flammwidrig, halogenfrei									
	Isolierungsmaterial nach SAE J 1128/									
	ESB-M1 L 123-A/MS-8288/UTMS 12501									
Spezielle E	igenschaften									
Auch als	SXL, GXL sowie verzinnt lieferbar									
Normen/S	ormen / Spezifikationen									
Amerikanis	che Normung: SAE J1128									

WTA mit ultra-dünnwandiger PVC-Isolierung

					Lei	iteraufbau	ı	Isolierung		Kabel	
									Auf	ßen-Ø	
		Größe	Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C blank/verzinnt max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewich ca.
		AWG	mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/km
emperatu	ırbereich (3.000 h)	22	0,35	7	0,25	0,76	53,9 / 57,8	0,20	1,35	-0,15	5
-40 °C b	ois +85 °C	20	0,5	7	0,32	0,97	34,3 / 36,4	0,20	1,55	-0,15	7
		18	0,8	19	0,23	1,17	23,0 / 24,7	0,20	1,75	-0,15	9
Aufbau / Werkstoffe	16	1,3	19	0,28	1,45	15,5 / 16,6	0,20	2,03	-0,15	13	
Leiter	Weichgeglühtes Elektrolytkupfer	14	3	19 19	0,36 0,45	1,8 2,3	9,44 / 10,0 6,0 / 6,37	0,20 0,24	2,39 3,00	-0,15 -0,15	21 31
	gemäß ASTM B3, Leiteraufbau gemäß										
	Kundenspezifikation										
solierung	PVC, ultra-dünnwandig										
	Isolierungsmaterial nach SAE J 1678 /										
	Ford WSB M1L134-A / Chrysler MS										
	9532/Lear UTMS 12501/SAE J1678										
Spezielle E	igenschaften										

WXC mit ultra-dünnwandiger XLPE-Isolierung

Normen/Spezifikationen

www.leoni-automotive-cables.com

Amerikanische Normung: SAE J1678

					Lei	iteraufbau	ı	Isolierung		Kabel	
									Auí	3en-Ø	
		Größe	Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø	Leiter-Ø	Elektr. Widerstand bei 20°C	Wand- dicke		zu- lässige Abwei-	Gewic
					max.	max.	blank/verzinnt max.	min.	max.	chung	ca.
_		AWG	mm ²		mm	mm	mΩ/m	mm	mm	mm	kg/k
Temperati	urbereich (3.000 h)	22	0,35	7	0,25	0,76	53,9 / 57,8	0,20	1,35	-0,15	5
-40 °C b	ois +125 °C	20	0,5	7	0,32	0,97	34,3 / 36,4	0,20	1,55	-0,15	7
		18 16	0,8 1,3	19 19	0,23	1,17 1,45	23,0 / 24,7 15,5 / 16,6	0,20	1,75 2,03	-0,15 -0,15	13
Aufbau/V	Verkstoffe	14	2	19	0,36	1,43	9,44 / 10,0	0,20	2,39	-0,15	21
Leiter	Weichgeglühtes Elektrolytkupfer	12	3	19	0,45	2,3	6,0 / 6,37	0,24	3,00	-0,15	32
	gemäß ASTM B3, Leiteraufbau gemäß										
	Kundenspezifikation										
Isolierung	XLPE, ultra-dünnwandig, flammwidrig,										
	halogenfrei										
	Isolierungsmaterial nach SAE J 1678/										
	Ford WSS M1L-135-A / Lear UTMS 12501										
Spezielle E	igenschaften										
Auch in Au	sführung UXC lieferbar										
Normen/S	Spezifikationen										
	<u> </u>										

AV mit PVC-Isolierung

Leiteraufbau Isolierung Kabel Außen-Ø Anzahl Einzel- Leiter-Ø Elektr. Wandquer-Einzel-Widerstand lässige dicke schnitt drähte bei 20 °C Abweimax. max. max. max. chung ca. mm mm mΩ/m kg/km mm Temperaturbereich 0,5 0,32 1,0 32,7 0,60 2,4 -0,2 10 0,85 11 0,32 1,2 20,8 0,60 2,6 -0,2 13 -40 °C bis +80 °C 1,25 0,32 1,5 0,60 2,9 -0,2 0,32 1,9 0,60 3,4 -0,3 26 8,81 Aufbau / Werkstoffe 3 -0,3 41 0,32 2,4 5,59 0,70 4,1 40 Weichgeglühtes Elektrolytkupfer 65 0,32 3,0 0,80 4,9 -0,3 8 3,7 0,90 5,8 -0,3 Cu-ETP1 nach D 609-90, blank 50 0,45 2,32 10 -0,4 63 0,45 4,5 1,84 1,00 6,9 Litzenkonstruktion gemäß 15 1,10 7,4 -0,4 160 84 0,45 4,8 1,38 JASO D 611:2009 0,5 f 20 1,0 36,7 0,60 2,4 -0,2 0,18 Isolierung PVC, Isolierungsmaterial 0,75 f 0,18 1,2 24,4 0,60 2,6 -0,2 12 30 1,25 f 2,9 -0,2 18 50 0,18 1,5 14,7 0,60 gemäß JASO D 611:2009 2 f 3,4 -0,4 25 37 0,26 1,8 9,5 0,60 3 f 61 0,26 2,4 5,76 0,70 4,1 -0,3 Normen/Spezifikationen

Japanische Normung:

Normen/Spezifikationen Japanische Normung:

JASO D 611:2009 · JASO D618:2008

JASO D 611:2009 · JASO D 618:2008 · JIS C 3406

AVS mit PVC-Isolierung

					Le	iteraufbau	I	Isolierung		Kabel	
									Auß	en-Ø	
			Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø max.	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
			mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
	Temperatu	rbereich	0,3	7	0,26	0,8	50,2	0,50	1,9	-0,1	6
	-40 °C bis +80 °C		0,5	7	0,32	1,0	32,7	0,50	2,1	-0,1	8
	40 C D	13 100 €	0,85	11	0,32	1,2	20,8	0,50	2,3	-0,1	12
	Aufbau / W	Jerkstoffe	1,25	16	0,32	1,5	14,3	0,50	2,6	-0,1	16
-			2	26	0,32	1,9	8,81	0,50	3,1	-0,2	25
	Leiter	Weichgeglühtes Elektrolytkupfer	3	41	0,32	2,4	5,59	0,60	3,8	-0,2	39
		Cu-ETP1 nach D 609-90, blank	5	65	0,32	3,0	3,52	0,70	4,6	-0,2	60
		Litzenkonstruktion gemäß	0,3 f	15	0,18	0,8	48,9	0,50	1,9	-0,1	6
		•	0,5 f	20	0,18	1,0	36,7	0,50	2,1	-0,1	8
		JASO D 611:2009	0,75 f	30	0,18	1,2	24,4	0,50	2,3	-0,1	11
	Isolierung	PVC, Isolierungsmaterial	1,25 f	50	0,18	1,5	14,7	0,50	2,6	-0,1	17
		gemäß JASO D 611:2009	2 f	37	0,26	1,8	9,5	0,50	3,1	-0,2	24

 $^{^6\, \}text{Das}\, {}_{\text{\it{n}}} f''$ kennzeichnet einen flexiblen Leiter mit einem geringeren Einzeldraht-Ø.

AVSS mit dünnwandiger PVC-Isolierung

gemäß JASO D 611:2009

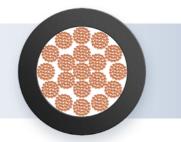
Normen/Spezifikationen

www.leoni-automotive-cables.com

JASO D 611:2009 · JASO D618:2008

Japanische Normung:

				Le	eiteraufbau	l	Isolierung		Kabel	
								Auß	en-Ø	
		Nenn- quer- schnitt	Anzahl Einzel- drähte	Einzel- draht-Ø max.	Leiter-Ø	Elektr. Widerstand bei 20°C max.	Wand- dicke min.	max.	zu- lässige Abwei- chung	Gewicht ca.
		mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
Tempera	Temperaturbereich		7	0,26	0,8	50,2	0,30	1,5	-0,1	5
_40 °C	bis +80 °C	0,5	7	0,32	1,0	32,7	0,30	1,7	-0,1	7
-40 C	DI3 +00 C	0,85	19	0,24	1,2	21,7	0,30	1,9	-0,1	10
Aufhau /	Werkstoffe	1,25	19	0,29	1,5	14,9	0,30	2,2	-0,1	14
Aurbau /	werkstorre	2 (f)	37	0,26	1,8	9,5	0,40	2,7	-0,1	22
Leiter	Weichgeglühtes Elektrolytkupfer	0,3 f	19	0,16	0,8	48,8	0,30	1,5	-0,1	5
	Cu-ETP1 nach JIS C 3102, blank	0,5 f	19	0,19	1,0	34,6	0,30	1,7	-0,1	7
	,	0,75 f	19	0,23	1,2	23,6	0,30	1,9	-0,1	10
	Litzenkonstruktion gemäß	1,25 f	37	0,21	1,5	14,6	0,30	2,2	-0,1	14
	JASO D 611:2009									


⁶ Das "f" kennzeichnet einen flexiblen Leiter mit einem geringeren Einzeldraht-Ø. Isolierung PVC, Isolierungsmaterial

 $^{^6\,\}text{Das}$ "f" kennzeichnet einen flexiblen Leiter mit einem geringeren Einzeldraht-Ø.

Batterieleitung

Temperaturbereich (3.000 h)

•	· · · · · · · · · · · · · · · · · · ·						Janianian Kahal			
−40 °C b	is +110 °C			Le	iteraufbau	l	Isolierung		Kabel	
								Auß	en-Ø	
Aufbau / W	Jorkstoffa	Nenn-	Anzahl	Einzel-	Leiter-Ø	Elektr.	Wand-		zu-	Gewicht
Auibau / W	reikstoffe	quer-	Einzel-	draht-Ø		Widerstand	dicke		lässige	
Leiter	Weichgeglühtes Elektrolytkupfer	schnitt	drähte ⁶			bei 20 °C	l .		Abwei-	
	Cu-ETP1 nach DIN EN 13602, blank			max.	max.	max.	min.	max.	chung	ca.
Isolierung	TPE-U (Thermoplastisches	mm²		mm	mm	mΩ/m	mm	mm	mm	kg/km
	Polyurethan-Elastomer)	6	84	0,31	3,3	3,14	0,80	5,0	-0,4	66
	,	10	80	0,41	4,5	1,82	1,00	6,5	-0,5	109
	gemäß ISO 6722-1, Klasse B	16	126	0,41	6,3	1,16	1,00	8,3	-0,6	176
		25	196	0,41	7,8	0,743	1,30	10,4	-0,7	273
Spezielle E	igenschaften	35	276	0,41	9,0	0,527	1,30	11,6	-0,6	355
Auch als	Alu-Batterieleitung lieferbar	50	396	0,41	10,5	0,368	1,50	13,5	-2,0	511
		70	360	0,51	12,5	0,259	1,50	15,5	-2,0	705
		95	475	0,51	14,8	0,196	1,60	18,0	-2,0	905
		120	608	0,51	16,5	0,153	1,60	19,7	-2,0	1170

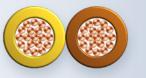
⁶ Abweichungen bei der Drahtzahl sind zulässig (±5 %).

FLYY mit PVC-Aderisolierung und PVC-Mantel

Temperaturbereich (3.000 h)

Mantel wahlweise festhaftend oder

in trennbarer Ausführung lieferbar


-40 °C bis +	105 °C			Leite	eraufbau		l:	olierun	g ⁶		Kabel	
40 C DIS 1	103 €									Auß	en-Ø	
Aufbau / Werks	toffe	Nenn- guer-	Anzahl Einzel-	Einzel- draht-	Leiter- Ø	Elektr. Widerstand	Wand- dicke	Ader- Ø	Mantel- wand-		zu- lässige	Gewicht
Leiter	Weichgeglühtes Elektrolytkupfer	schnitt	drähte	Ø		bei 20 °C			dicke		Abwei-	
	Cu-ETP1 nach DIN EN 13602,			max.	max.	max.	min.		min.	max.	chung	ca.
	blank	mm²		mm	mm	mΩ/m	mm	mm	mm	mm	mm	kg/km
	Leiteraufbau gemäß ISO 6722-1	0,5	16	0,21	1,0	37,1	0,60	2,1	0,4	3,1	-0,4	14
Adoricalianung/	3	0,75	24	0,21	1,2	24,7	0,60	2,3	0,4	3,3	-0,3	17
Aderisolierung/	Weich-PVC mit Eigenschaften	1	32	0,21	1,35	18,5	0,60	2,5	0,4	3,6	-0,4	20
Mantel	gemäß ISO 6722-1, Klasse B	1,5	30	0,26	1,7	12,7	0,60	2,8	0,5	4,1	-0,4	28
		2	40	0,26	2,0	9,42	0,60	3,0	0,5	4,3	-0,4	33
Spezielle Eigen	schaften	2,5	50	0,26	2,2	7,61	0,70	3,5	0,5	4,8	-0,5	41

⁶ Alle Querschnitte sind auch mit reduzierter Isolierwanddicke (FLRYY) lieferbar.

FLRY n x... Verdrillte Leitungen

ungeschirmt (ohne Mantel)

Temperaturbereich (3.000 h)

10 °C h	is +105 °C	Aufbau		Leiterau	ufbau Ade	er	Isolieru	ng Ader		Kabel	
-40 C D	115 +105 C	Ader-									
Aufbau/W	/erkstoffe	anzahl x	Anzahl Einzel-	Einzel- draht-	Leiter-	Elektr. Widerstand	Wand- dicke ⁶	Ader- Ø	Schlag- länge	Außen- Ø	Gewicht
Leiter	Weichgeglühtes Elektrolytkupfer	Nenn- guer-	drähte	Ø		bei 20 °C					
	Cu-ETP1 nach DIN EN 13602,	schnitt		max.	max.	max.	min.	max.	nom.	max.	ca.
	blank, verzinnt	mm²		mm	mm	mΩ/m	mm	mm	mm	mm	kg/km
	Leiteraufbau gemäß ISO 6722-1	2 x 0,35	7	0,26	0,8	52,0	0,20	1,3	16	2,6	9
Isolierung	Weich-PVC mit Eigenschaften	2 x 0,35	7	0,26	0,8	52,0	0,20	1,3	20	2,6	9
isoliciung	3	2 x 0,35	7	0,26	0,8	52,0	0,20	1,3	30	2,6	9
	gemäß ISO 6722-1, Klasse B	2 x 0,5	19	0,19	1,0	37,1	0,22	1,6	15	3,2	13
		2 x 0,5	19	0,19	1,0	37,1	0,22	1,6	30	3,2	13
Spezielle E	igenschaften	2 x 0,5	16	0,21	1,0	37,1	0,22	1,6	20	3,2	13
Weitere Au	sführungen mit	2 x 0,5	16	0,21	1,0	37,1	0,22	1,6	30	3,2	13
	Värmebeständigkeit	2 x 0,5	19	0,19	1,0	37,1	0,22	1,6	30	3,5	20
	3	2 x 0,5	16	0,21	1,0	37,1	0,22	1,6	40	3,5	20
verzinnte	m Leiter	2 x 0,75	19	0,23	1,2	24,7	0,24	1,9	30	3,8	18
anderer S	chlaglänge	2 x 0,75	24	0,21	1,2	24,7	0,24	1,9	30	3,8	18
auf Anfrage	lioforbar	3 x 0,75	19	0,23	1,2	24,7	0,24	1,9	30	4,1	27
aui Ailiiaye	Ellererbai	2 x 1,0	19	0,26	1,35	18,5	0,24	2,1	30	4,2	22
Dozoichou	ngsbeispiel	2 x 1,0	32	0,21	1,35	18,5	0,24	2,1	30	4,2	22
Dezeiciiiu	ilgsbeispiel	3 x 1,0	32	0,21	1,35	18,5	0,24	2,1	25	4,5	33
FLRY 2 x 0,	.5-A BN / YE S30MM	4 x 1,0	19	0,26	1,35	18,5	0,24	2,1	30	5,1	44
verdrillt	e Leitung	2 x 1,5	19	0,32	1,7	12,7	0,24	2,4	30	4,8	32
2 Adern	x Nennquerschnitt 0,5 mm ²	2 x 2,5	50	0,26	2,2	7,8	0,28	3,0	30	6,0	52
	ıfbau Typ A	5 x 2,5 6 x 2,5	50 50	0,26	2,2	7,8 7,8	0,28	3,0 3,0	50 55	8,1 9,0	130 156

Schlaglänge S 30 MM Normen/Spezifikationen

www.leoni-automotive-cables.com

Aderfarben BN, YE

LV 122 · Daimler B47 · VW 75205

LEONI

Qualitäts- und Umweltmanagement

LEONI – The Quality Connection

LEONI weltweit

Die Automotive-Cable-Standorte der LEONI-Gruppe

LEONI Qualitätsmanagement

Durch unser Qualitätsmanagement entsprechen wir den außerordentlich hohen Ansprüchen unserer Kunden aus der Automobilindustrie. Die Draht- und Kabelstandorte von LEONI sind
weltweit gemäß der ISO 9001:2008 zertifiziert; alle Standorte, an
denen Fahrzeugleitungen produziert werden, gemäß der ISO/TS
16949:2009. Schwerpunktmäßig betreiben wir vorbeugende Qualitätssicherung, in der fehlerverhütende Instrumentarien wie FMEA oder Maschinen- und Prozessfähigkeitsanalysen ihren angestammten Platz haben.

Während des Fertigungsprozesses messen, überwachen und regeln wir mit modernsten Anlagen kontinuierlich den Durchmesser und die Beschaffenheit der Isolierung unserer Kabel und Leitungen. Durch regelmäßige Stichprobenprüfungen sichert die Fertigungsprüfung die Einhaltung der geforderten Grenzwerte. Diese Prüfungen im unmittelbaren Fertigungsbereich garantieren eine schnelle Reaktion auf Störeinflüsse.

Entsprechend den Kundenspezifikationen bzw. den in- und ausländischen Regelwerken prüfen wir unter anderem:

- das Verhalten der Kabel und Leitungen unter extremen
 Temperaturbedingungen
- die Funktionstüchtigkeit nach künstlicher Alterung
- die Resistenz gegen Treibstoffe, Schmiermittel und Umwelteinflüsse
- Dehnung, Abrieb- und Reißfestigkeit der Isolierhülle
- die mechanischen und elektrischen Eigenschaften des Leiters
- Biegewechselfestigkeit und Torsionsbeständigkeit

Das Zusammenwirken dieser qualitätssichernden Maßnahmen erlaubt eine ständige Optimierung unserer hochgesteckten Qualitätsziele.

Verkaufsbüros
Technischer Support – Automotive Cables
Fertigungsstätten – Automotive Cables

LEONI Umweltmanagement

Umweltbewusstes Denken und Handeln sind ein zukunftsweisender Faktor für LEONI.

Als erfolgreiches und global produzierendes Unternehmen sorgt LEONI für die aktive und wirkungsvolle Umsetzung seiner Umweltpolitik:

Umweltschonende Fertigung

Schonung der natürlichen Ressourcen bei der Produktund Prozessentwicklung

Vermeidung von Emissionen

Abfallreduzierung

Gerne beraten wir unsere Kunden über den umweltfreundlichen Umgang und die Entsorgung unserer Produkte. Unsere Organisation ist nach DIN EN ISO 14001:2004 zertifiziert. Die Nähe zu unseren Kunden ist zentraler Bestandteil unserer Firmenpolitik. LEONI ist seinen Kunden ein zuverlässiger Partner – und das überall auf der Welt. Zeichen von Nähe ist für uns auch, Qualität und Service auf weltweit gleich hohem Niveau zu halten und auszubauen.

Durch die internationale Positionierung, standardisierte Methoden und klar definierte Prozesse unterstützen wir effizientes Arbeiten sowie die Innovationskraft und die Marktposition unserer Kunden.

Ganz gleich, wo wir unser Know-how, unser Engagement und unsere Ideen ein- und umsetzen: wir wollen weltweit den überzeugten Kunden.

www.leoni-automotive-cables.com

Alle Fertigungsstätten im Überblick

Deutschland LEONI Kabel GmbH, Roth LEONI HighTemp Solutions GmbH,

China

LEONI Cable (Changzhou) Co. Ltd., Changzhou

LEONI Wire & Cable Solutions Japan K.K., Aichiken

Indien

LEONI Cable Solutions (India) Pvt. Ltd., Pune

Marokko

LEONI Cable Maroc SARL.,

Mexiko

LEONI Cable Mexico S.A. de C.V.,

Polen

LEONI Kabel Polska Sp.z.o.o., Kobierzyce

Slowakei

LEONI Slowakia spol. s.r.o., Nová Dubnica

Türkei

LEONI Kablo ve Teknolojileri San. ve Tic. Ltd. Sti., Gemlik

Ungarn

LEONI Kábelgyár Hungaria Kft.,

Erfahren Sie mehr:

Business Unit Automotive Standard Cables

www.leoni-automotive-cables.com

LEONI Kabel GmbH

Stieberstraße 5 91154 Roth Deutschland Telefon +49 (0)9171-804-2218 Telefax +49 (0)9171-804-2232

E-Mail cable-info@leoni.com