LEONI – Automotive cables for temperatures ≥150°C

The Quality Connection

LEONI Automotive cables

Typical temperature ranges and applications – Overview

Content	Page
Typical temperature ranges and applications – Overview	2 – 3
Insulation material properties	4 – 5
Conductor materials	6 – 8
LEONI Adascar® cables	9 – 12
LEONI Mocar [®] cables	13
Production technologies	14
Quality and environmental management	14
LEONI worldwide	15

Per

Issue: November 2014 Subject to change and error.

© by LEONI Kabel GmbH 2013

Please note: LEONI herewith warrants that the delivery items contained in this catalogue will be of the agreed nature and quality upon passing of the risk. Aforementioned nature of the delivered items shall be exclusively rated and measured by the sales and purchase agreements made in writing between LEONI and the purchaser about nature and quality, properties and characteristic performance features of the respective delivery item. Illustrations and information contained in catalogues, price lists and other information material disclosed to the purchaser by LEONI as well as any information describing the product shall be only legally binding, if expressly being referred to as binding information. Under no circumstances, such information shall be taken as guarantee for the special quality or nature of the delivery item. Such quality guarantees must be explicitly agreed upon in writing. LEONI herewith reserves the right to modify the content of this catalogue at any time. Temperature range + **250** °C Catalytic converter, turbo and exhaust systems

Page 12 – 13

Temperature range + 220 °C Brake system wiring

Page 10, 11, 13

Temperature range + **150 °C to + 260 °C** Engine compartment, gear unit and temperature sensors

Page 9 – 13

Temperature range + **130 °C to** + **150 °C** Cooling system

Page 9

Temperature range + **150 °C** Axle wiring with ABS cables, head lamp

Page 9

111031

LEON

Further applications possible.

Insulation material properties

LEOMER[®]

It's all in the mix

LEONI carries its insulation materials for the production of cable under the brand name of LEOMER. With more than 50 of its own formulas developed in-house, LEONI ensures that the requirements arising from the particular applications of our customers are fulfilled in the best possible way. The manufacture of our insulation materials in-house and the close collaboration between our production and materials development guarantee a consistently high standard of quality.

The name LEOMER is composed of the terms LEONI and polymer, and represents the diversity of the materials used at LEONI.

Symbol	Name	Code	Density	Halogen content	Hardness Shore A/D	Tensile strength	Elongation at break
		DIN	100 11100		150.060	160 527	ISO 527
Eluorpoly	e.g. DIN ISO 1629 and 7728	/6/22	150 11183		150 868	150 527	DIN 53504
Fluorpoly	mers					MPa	
FTFF	Ethylen tetrafluoroethylene	7Y	1 70	60	75D	> 30	> 200
FEP	Fluorinated ethylene propylene	6Y	2.14	75	55D	> 15	> 200
PTFE	Polytetrafluoroethylene	5Y	2.12-2.17	75	55D-65D	> 20	> 200
PFA	Perfluoroalkoxy copolymer	51Y	2.15	75	55D	> 20	> 200
Thermop	lastic elastomers						
				approx. %			
TPE-U	Thermoplastic polyether polyurethane	11Y	1.12	0	75A–54D	> 30	> 400
TPE-S	Thermoplastic polystyrene block copolymer	31Y	1.10-1.30	0-10	50D-65D	> 15	> 200
TPE-E	Thermoplastic polyether ester elastomer	12Y	1.16–1.25	0	40D-82D	> 25	> 400
TPE-A	Thermoplastic polyamide elastomer	41Y	1.01-1.06	0	63D	> 25	> 400
TPE-E	Thermoplastic polyether elastomer	13Y	1.25-1.28	0	55D-62D	> 30	> 300
Crosslink	ed polymers / silicone						
				approx. %			
XLPE	Polyethylene (irradiation, silane, peroxide crosslinked)	2X	1.20–1.50	10	30-60D	> 10	> 200
EVA	Ethylene vinyl acetate	4G	1.30-1.40	0	80A-87A	> 7	> 150
SIR	Silicone rubber	2G	1.20–1.30	0	40A-90A	6–20	> 200

Servi	ce temperatu	res				Resistance to					
Temperature Index	Thermal overload capacity	Cold winding test	Specific volume resistance	Ab- rasion	Flame retardation	Oil	Fuels	Brake fluid	Acids/ alkalis	Organic agents	
ISO 67	22-1 or ISO 14	572	IEC 93 DIN 53482			ISC	ISO 6722-1 or ISO 14572				
°C/3,000 h	°C/48 h	°C	$\Omega \cdot cm$								
180	230	-65	> 10 ¹⁵	++	++	++	++	++	++	++	
210	260	-65	> 10 ¹⁵	++	++	++	++	++	++	++	
260	305	-90	> 10 ¹⁸	++	++	++	++	++	++	++	
260	290	-90	> 1015	++	++	++	++	++	++	++	
110–150	150	-40	> 109	++	+	++	++	+	+	+	
125	150	-40	> 10 ¹⁰	-	+	+	+	-	+	-	
125–150	150	-40	> 109	++	-	++	++	+	-	+	
125–150	120	-40	> 10 ¹⁰	++	-	++	++	+	-	+	
125–150	180	-40	> 109	++	+	++	++	+	+	+	
					' '						
125–150	150	-40	> 10 ¹⁴	+	+	+	+	-	+	+	
140	180	-40	> 10 ¹⁰	-	-	_	_	_	_	_	
200	225	-80	> 10 ¹⁶	-	+	+	+	++	+	+	
							++ excelle	nt + good	l – fair	poor	

Conductor materials

Copper (Cu) is the conductive material we most commonly use in our cables. We employ mainly Cu-ETP1 (oxygenic copper) and Cu-OF1 (oxygen-free copper for such special applications as resistance to hydrogen) in the production of our wires.

In addition to pure copper we also process a variety of copper alloys for special applications.

Extract from EN 1977 - copper

Symbol	Material number	Composition	Density	Melting point	% IACS min.	Notes on properties and use
		in % by weight	g/cm³		ISO 868	ISO 527
Oxygenic o	opper					
Cu-ETP1 (E-Cu)	CW 003 A	Cu ≥ 99.90 oxygen max. 0.040	8.9	1,083 °C	80A-60D	Oxygenic (tough-pitch) copper with an electrical conductivity in soft condition of \ge 58.58 m/Ωmm ² at 20 °C.
Oxygen-fr	ee copper, nor	n-deoxidized				
Cu-OF1 (OF-Cu)	CW 007 A	Cu 99.95	8.9	1,083 °C	101	 High-purity copper, largely free of elements that evaporate in vacuum, with an electrical conductivity in soft condition ≥ 58.58 m/Ωmm² at 20 °C. Intermediate material meeting high requirements on hydrogen resistance; welding and hard soldering capability. For vacuum systems and electronics.

International Annealed Copper Standard = IACS

Electrical conductivity of copper = min. 58 m/ Ω mm² = 100 % IACS

Excerpt from DIN CEN/TS 13388 and EN 1977 – Alloys

Symbol	Material number	Composition	Density	Melting point	% IACS min.	Information regarding properties and use
		in % by weight	g/cm³			
CuAg 0.1	CW 013 A	Ag min. 0.08 max. 0.12	8.9	1,083 °C	98	Copper alloys with high tensile strength electrical conductivity of $\ge 57 \text{ m}/\Omega \text{mm}^2$ at 20 °C in soft condition.
CuMg 0.2	CW 127 C	Mg * min. 0.14 max. 0.26	8.9	1,078 °C	75	Copper alloys with high tensile strength electrical conductivity of $\ge 44 \text{ m}/\Omega \text{mm}^2$ at 20 °C in soft condition.
CuSn 0.3**	CW 129 C	Sn * min. 0.25 max. 0.35	8.9	1,065 °C	72	Copper alloys with high tensile strength electrical conductivity of $\ge 42 \text{ m}/\Omega \text{mm}^2$ at 20 °C in soft condition.
 Tolerance de Symbol devi 	eviating from DIN (iating from DIN CE	CEN/TS 13388 N/TS 13388				

Excerpt from EN 573 – Aluminium

Symbol	Material number	Composition	Density	Melting point	% IACS min.	Information regarding properties and use
		in % by weight	g/cm³			
EAI 99.7	1370	AI 99.7	2.7	659 °C	62	Aluminium with electrical conductivity of \geq 35.5 m/ Ω mm ² at 20 °C in soft condition.

Galvanic coatings: The metal materials used for galvanically refined copper wires are tin, silver or nickel, depending on the requirements.

Tin								
Designation	Tin 99.90							
Density	7.29 g/cm ³							
Melting point	232 °C							
Symbol	Sn							

Silver									
Designation	Fine silver 99.97								
Density	10.5 g/cm ³								
Melting point	960 °C								
Symbol	Ag								

Nickel								
Designation	Nickel 99.90							
Density	8.9 g/cm ³							
Melting point	1450 °C							
Symbol	Ni							

Criteria for use

- Good solderabilityEffective protection against corrosion
- High temperature resistance
 Good surface conductivity (skin effect)
- High resistance to corrosion and temperature

Temperature limits for the use of conductor materials.

Directive CSA-C22.2 No. 210.2 assigns conductor materials to the following temperature limits:

Temperature range max. 150 °C*

- Bare and tin-plated copper with single wire Ø ≤0.38 mm
- Copper-plated steel wire (e.g. Staku) with single wire Ø ≤ 0.38 mm

Temperature range max. 200 °C*

- Bare and tin-plated copper with single wire Ø ≥0.38 mm
- Copper-plated steel wire
 (e.g. Staku) with single wire
 Ø ≥0.38 mm bare and tin-plated
- Silver-plated copper
- Copper alloy

- Temperature range max. 250 °C*
- Nickel-plated copper
- Silver-plated alloys of cadmium chrome-copper
- Nickel-plated steel wiresPure nickel wires for flexible
- applications and nickel alloys

* Similar to ISO 6722-1 temperature classes

LEONI Adascar[®] Standard cables

Advanced Automotive Special Cables.

Multi-core automotive cables with thermoplastic sheath material

BENEFITS / PROPERTIES

- high flexibility
- good insert moulding
- cold resistance
- resistance to hydrolysis
- good media resistance
- bending strength
- non crosslinked sheath material
- abrasion resistance

APPLICATIONS

ABS applicationswiring harness

Excerpt of our product range

- sensor technologycooling system

STANDARDS

In accordance with ISO 6722-1, LV 212, ISO 14572

INSULATION

- Thermoplastic elastomer on polyether ester basis (TPE-E)
- Polyethylene (irradiation, silane, peroxide crosslinked) (XLPE)
- Ethylene/vinyl acetate (EVA), crosslinked

SHEATH

 Thermoplastic elastomer on polyurethane basis (TPE-U)

OPERATING VOLTAGE

 $\leq 60 \, \text{V}$

Description	Code	Number of cores	Nominal cross- section mm ²	Insulation	Sheath	Shielding	Temperature range
				TPE-E			
Round cable	LEONI Adascar [®] Control 87xx	2 – 6	0.35 - 0.50	XLPE		-	
				EVA			
				TPE-E			
Round cable	LEONI Adascar [®] Control 97xx	2 – 6	0.35 - 0.50	XLPE		B or C	
Shielded				EVA			
				TPE-E			
		2 – 4	0.75 – 1.50	XLPE	TPE-U		- 40 °C to + 150 °C
Round cable	LEONI Adascar [®] Power 47xx			EVA		-	
			2.00	TPE-E			
			2.50	TPE-E			
				TPE-E			
			0.75 – 1.50	XLPE			
Round cable	LEONI Adascar [®] Power 57xx	2 – 4		EVA		B or C	
Sillelueu			2.00	TPE-E			
			2.50	TPE-E			

LEONI Adascar[®] Cables with special materials

Advanced Automotive Special Cables.

Multi-core automotive cables with thermoplastic sheath material

BENEFITS / PROPERTIES

- good heat resistance within thermal overload
- good insert moulding
- high flexibility
- lasting media resistance when immersed in oils
- crosslinked resp. non crosslinked sheath material
- solvent resistance (increased swelling resistance)
- thermal resistance up to 1,000 hours/180 °C
- flame retardance/non flame retardance

APPLICATIONS

- brake system wiring
- sensors for engine compartment
- wiring for gear unit

Excerpt of our product range

STANDARDS

In accordance with ISO 6722-1, LV 212, ISO 14572

INSULATION

- Polyethylene (irradiation, silane, peroxide crosslinked) (XLPE)
- Ethylene/tetrafluoroethylene (ETFE)

SHEATH

- Thermoplastic elastomer on polyamide basis (TPE-A)
- Thermoplastic elastomer on polyether ester basis (TPE-E)

OPERATING VOLTAGE

 $\leq 60 \text{ V}$

Description	Code	Number of cores	Nominal cross- section mm ²	Insulation	Sheath	Shielding	Temperature range
Round cable			0 35 - 0 50	XLPE	TPF-A		
heat resistant	LEONI Adascar® Control 87xx		0.55 0.50	ETFE		_	
Round cable oil resistant			0.35 – 0.50	ETFE	TPE-E		
Round cable				XLPE			
heat resistant shielded	LEONI Adascar® Control 97xx	2-4	0.35 – 0.50	ETFE	TPE-A	B or C	- 40 °C to + 150 °C
	LEONI Adascar® Power 47xx		-4 0.75 - 1.50	XLPE	TPE-A		
Round cable				ETFE			
neutresistant			2.00	ETFE		-	
Round cable oil resistant			0.75 – 1.50	ETFE	TPE-E		
Round cable heat resistant shielded			2.00	ETFE			
	LEONI Adaccar® Power 57xx	-	0.75 – 1.50	XLPE	TDE A	B or C	
	LEONI Adascar [®] Power 57xx			ETEE	IFE-A		
			2.50	LIIL			

LEONI Adascar[®] Irradiation crosslinked cables

Advanced Automotive Special Cables.

Multi-core automotive cables with irradiation crosslinked sheath material

BENEFITS / PROPERTIES

- **good heat resistance within thermal overload**
- good chemical resistance
- solvent resistance (increased swelling resistance)
- bending strength
- abrasion resistance
- flame retardance

APPLICATIONS

- brake system wiring
- sensors for engine compartment
- wiring for gear unit

STANDARDS

In accordance with ISO 6722-1, LV 212, ISO 14572

INSULATION

- Polyethylene (irradiation, silane, peroxide crosslinked) (XLPE)
- Ethylene/tetrafluoroethylene (ETFE)

SHEATH

Polyethylene (irradiation crosslinked)) (XLPE)

OPERATING VOLTAGE

 $\leq 60 V$

Excerpt of our produc	ct range								
Description	Code	Number of cores	Nominal cross- section mm ²	Insulation	Sheath	Shielding	Temperature range		
Round cable irradia- tion crosslinked	LEONI Adascar® Control 87xx				0.35 - 0.50	XLPE ETFE		-	
Round cable irra- diation crosslinked shielded LEONI Adascar®		2-4		XLPE		B or C			
	LEONI Adascar® Control 97xx		0.35 – 0.50	ETFE					
Round cable irradia-		2	2	2.00	ETEE	VIDE		40 °C +- 150 °C	
tion crosslinked		2	2.50	EIFE	XLPE		- 40 °C to + 150 °C		
Round cable irradia-	d cable irradia-		nd cable irradia-		0.75 1.50	XLPE		-	
tion crosslinked	LEUNI Adascar [®] Power 4/xx		0.75 - 1.50	ETFE					
Round cable irra-	LEONI Adascar® Power 57xx	2-4		XLPE		B or C			
diation crosslinked shielded			0.75 – 1.50	ETFE					

LEONI Adascar[®] Cables with high performance polymer

Advanced Automotive Special Cables.

Multi-core automotive cables with fluoro synthetics and silicone

BENEFITS / PROPERTIES

- **good mechanical and heat resistance properties**
- particularly suitable for internal wiring
- very good media resistance
- abrasion resistance
- flame retardance

APPLICATIONS

- exhaust system
- engine compartment

STANDARDS

In accordance with ISO 6722-1, LV 212, ISO 14572

INSULATION

- Polytetrafluoroethylene (PTFE)
- Perfluoroalkoxy copolymer (PFA)
- Ethylene / Tetrafluoroethylene (ETFE)
- Tetrafluoroethylene / Hexafluoropropylene (FEP)

SHEATH

- Polytetrafluoroethylene (PTFE)
- Perfluoroalkoxy copolymer (PFA)
- Ethylene / Tetrafluoroethylene (ETFE)
- Tetrafluoroethylene / Hexafluoropropylen (FEP)
- Silicone rubber (SIR)

OPERATING VOLTAGE

 $\leq 60 \text{ V}$

Excerpt of our product range							
Description	Code	Number of cores	Nominal cross- section mm ²	Insulation	Sheath	Temperature range	
Round cable	LEONI Adascar® Control 87xx	2-4	0.35 – 0.50	ETFE	ETFE	– 40 °C to + 180 °C	
				FEP	SIR	– 40 °C to + 200 °C	
					FEP	– 40 °C to + 210 °C	
				PFA	PFA	40 °C to 1 260 °C	
				PTFE	PTFE	-40 C t0 + 200 C	
	LEONI Adascar® Power 47xx		0.75 – 1.50	ETFE	ETFE	– 40 °C to + 180 °C	
				FEP	SIR	– 40 °C to + 200 °C	
					FEP	– 40 °C to + 210 °C	
				PFA	PFA	40 °C to 1 260 °C	
				PTFE	PTFE	-40 C 10 + 280 C	

LEONI Mocar[®] High temperature cables

Single-core automotive cables

BENEFITS / PROPERTIES

- temperature resistance up to + 260 °C
- very good media resistance
- abrasion resistance
- flame retardance

STANDARDS

In accordance with ISO 6722-1, LV 112 -1 and customer specifications

INSULATION

- Thermoplastic polyester elastomer (TPE-E)
- Ethylene / Tetrafluoroethylene (ETFE)
- Silicone rubber (SIR)
- Tetrafluoroethylene / Hexafluoropropylene (FEP)
- Perfluoroalkoxy copolymer (PFA)
- Polytetrafluoroethylene (PTFE)

APPLICATIONS

- exhaust system
- engine compartment
- temperature sensors
- brake wear indicator
- battery cables

Excerpt of our product range					
Description	Code	Number of wires	Nominal cross-section mm ²	Insulation	Temperature range
Automotive cable	LEONI Mocar [®] 150 C	7 – 19	Type A → 0.22 – 2.5	TPF-F	– 40 °C to + 150 °C
heat resistant		12 – 84	Type B → 0.35 – 6		
	LEONI Macar® 180 E	7 – 19	Type A → 0.35 – 2.5	ETEE	– 65 °C to + 180 °C
	LEOINTMOCAT TOUE	12 – 84	Type B → 0.35 – 6		
	LEONI Mocar [®] 200 G	12 – 457	0.35 – 95	CID	– 80 °C to + 200 °C
	LEONI Mocar [®] 200 G AL (Aluminium)	50 – 305	10 – 120	JIN	
Automotive cable		7 – 19	Type A → 0.35 – 2.5	FED	– 65 °C to + 210 °C
nightemperature resistant	LEONI Mocar [®] 210 F	12 – 84	Type B → 0.35 – 6	FEP	
	LEONI Mocar [®] 260 T	7 – 56	0.35 – 4	PFA	– 80 °C to + 260 °C
		7 – 19	Type A → 0.22 – 2.5	DTEE	– 90 °C to + 260 °C
	LEUNI MOCALE ZOU K	12 – 84	Type B → 0.35 – 6	FIFE	

Production technologies

for high-temperature cables

Silicone extrusion

PRODUCTION TECHNOLOGIES

LEONI has state-of-the-art machinery for processing hightemperature materials and covers all the relevant technologies in-house:

CROSSLINKING OF MATERIALS

Crosslinked materials involve the use of simple base materials that are mixed with a corresponding crosslinking accelerator. The crosslink in the material can be activated by three methods: physical, chemical and by irradiation. Additional crosslinks of the molecule chains form in the insulation material, which create greater resistance to environmental influences.

RAM EXTRUSION

PTFE may be processed by means of ram extrusion. The base material for this special process is a PTFE powder that is mixed with a lubricant and is, using a preform press, pressed into a cylindrical preform with an inner bore.

This preform is inserted into the ram extrusion cylinder and pressed through an extruder nozzle with a piston. The material coats the conductor that is fed through the extruder head. After the extrusion process, the lubricant is extracted again from the cable by applying heat and the cable is subsequently sintered at high temperature in a continuous furnace.

SILICONE PROCESSING

The principle for processing silicone is similar to that for PVC extrusion.

Yet the key difference lies in the temperature profile. Silicone is always processed cold, i.e. the mixing mill and the extruder are kept at a constant temperature of less than 20°C via a large number of different control areas. The heat generated during compounding and extrusion is directly dissipated. After extrusion, the silicone rubber has to be crosslinked. The molecules are linked into three-dimensional webs using a crosslinking agent. This takes place inside separately controllable crosslinking furnaces through which the product passes immediately after extrusion. Various temperature profiles can be set here. Applying a high temperature enables or accelerates the crosslinking process, depending on the two following methods:

- Peroxide crosslinking requires a higher temperature and more time before the crosslinking process is completed.
- The process of platinum catalysed crosslinking takes place even below room temperature. To prevent premature crosslinking of the silicone rubber, sufficient cooling of the mixing mill and the extruder is therefore absolutely necessary.

Quality and environmental management

LEONI – The Quality Connection

The wire and cable production locations of LEONI are certified worldwide in line with ISO 9001:2008; all locations, in which automotive cables are produced, are certified in accordance with ISO/TS 16949:2009.

Our environmental management is certified in compliance with DIN EN ISO 14001:2004.

LEONI worldwide

Facilities of the Business Group Automotive Cables

Proximity to our customers is a core element of our corporate policy. LEONI is a dependable partner to its customers – all over the world. We also regard maintaining, as well as raising quality and service at the same high level everywhere in the world as a sign of proximity.

We support efficient operating as well as our customers' power of innovation and market position on the basis of our own international positioning, standardised methods and clearly defined processes.

No matter where we apply our know-how, commitment and ideas: we want satisfied customers worldwide.

An overview of all entities

Germany LEONI Kabel GmbH, Roth LEONI HighTemp Solutions GmbH, Halver

China LEONI Wire (Changzhou) Co. Ltd., Changzhou

Japan LEONI Wire & Cable Solutions Japan K.K., Aichiken

India LEONI Cable Solutions (India) Pvt. Ltd., Pune

Mexico LEONI Cable Mexico S.A. de C.V., Cuauhtémoc Poland LEONI Kabel Polska Sp.z.o.o., Kobierzyce

Slovakia LEONI Slovakia, spol. s r.o., Trenčianska Teplá

Turkey LEONI Kablo ve Teknolojileri San. ve Tic. Ltd. Sti., Gemlik

Hungary LEONI Kábelgyár Hungaria Kft., Hatvan

USA LEONI Cable Inc., Rochester

Find out more:

Business Group Automotive Cables

www.leoni-automotive-cables.com

LEONI Kabel GmbH

Stieberstraße 5 91154 Roth Germany Phone +49 (0)9171-804-2378 Fax +49 (0)9171-804-2421 E-mail cable-info@leoni.com